Abstract
This study provides the first quantitative estimate of heat loss for a Columbia River Basalt Group flow. A glass composition-based geothermometer was experimentally calibrated for a composition representative of the 500-km-long Ginkgo flow of the Columbia River Basalt Group to measure temperature change during transport. Melting experiments were conducted on a bulk sample at 1 atm between 1200 and 1050 °C. Natural glass was sampled from the margin of a feeder dike near Kahlotus, Washington, and from pillow basalt at distances of 120 km (Vantage, Washington), 350 km (Molalla, Oregon), and 370 km (Portland, Oregon). Ginkgo basalt was also sampled at its distal end at Yaquina Head, Oregon (500 km). Comparison of the glass MgO content, K2O in plagioclase, and measured crystallinities in the experimental charges and natural samples tightly constrains the minimum flow temperature to 1085 ± 5 °C. Glass and plagioclase compositions indicate an upper temperature of 1095 ± 5 °C; thus the maximum temperature decrease along the flow axis of the Ginkgo is 20 °C, suggesting cooling rates of 0.02–0.04 °C/km. These cooling rates, substantially lower than rates observed in active and historic flows, are inconsistent with turbulent flow models. Calculated melt temperatures and viscosities of 240–750 Pa ṁ s allow emplacement either as a fast laminar flow under an insulating crust or as a slower, inflated flow.