We test a new approach to understanding the tectonic evolution of passive margins by using fission-track analysis on detrital apatites from sediments deposited offshore East Greenland. These apatites have not undergone postdepositional track annealing and therefore reflect provenance. The apatites preserve a component of the source rocks' thermal history that otherwise may not be retained within the present-day outcrop. Fission-track–derived denudational histories from samples at Ocean Drilling Program drill sites offshore East Greenland at lat 63°N are compared with data from the onshore Singertat Complex. Previous apatite fission-track studies and geomorphic mapping of the East Greenland coast have shown that locally up to 6 km of denudation may have occurred, implying significant tectonic or magmatic activity starting as much as 30 m.y. after breakup at 56 Ma. In contrast, apatite fission-track data presented here record <2 km of Cenozoic denudation in southeast Greenland, probably driven by magmatic underplating at the time of breakup. Large-magnitude, postrift denudation of East Greenland is restricted to the area around Kangerdlugssuaq (68°N). The timing (<40–50 Ma) and magnitude are in accord with revised plume track models suggesting that the Iceland plume crossed the margin here during the late Eocene.

First Page Preview

First page PDF preview
You do not currently have access to this article.