Abstract
The rate of long-term (2 m.y.) base-level lowering estimated in an extensive sequence of limestone caves in Sarawak, Malaysia, from uranium series, electron spin resonance, and paleomagnetic dating is 0.19 +0.03/−0.04 m/ka. This rate has remained constant over at least the last 700 ka, as shown by comparison of the number and spacing of wall notches formed during phases of interstadial and interglacial aggradation with peaks in the deep-sea oxygen isotope curve. It is argued that base-level lowering occurs in response to epirogenic uplift of the more resistant limestones due to regional denudation of the softer shales, and to flexural isostacy associated with high rates of offshore sedimentation.
This content is PDF only. Please click on the PDF icon to access.
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.