Near infrared (NIR) spectra of Precambrian metagraywacke in the Black Hills, South Dakota, demonstrate that reflectance spectroscopy can be used to monitor progressive changes in mineral chemistry as a function of metamorphic grade. The wavelength of a combination Al-O-H absorption band in muscovite, measured using both laboratory and field-portable NIR spectrometers, shifts from 2217 nm in the biotite zone to 2199 nm in the sillimanite + K-feldspar zone. The band shift corresponds to an increase in the Alvi content of muscovite, determined by electron microprobe, and is thus a monitor of Al2Si-1(Fe,Mg)-1 (Tschermak) exchange. Spectroscopic measurements such as these are useful in the case of aluminum-deficient rocks, which lack metamorphic index minerals or appropriate assemblages for thermobarometric studies, and in low-grade rocks (subgarnet zone), which lack quantitative indicators of metamorphic grade and are too fine grained for petrographic or microprobe studies. More important, spectroscopic detection of mineral-chemical variations in metamorphic rocks provides petrologists with a tool to recover information on metamorphic reaction histories from high-spectral-resolution aircraft or satellite remote sensing data.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.