To understand the relation between fluid seeps and structures, sedimentary rocks were collected with the DSRV Alvin from a vertical fault zone that transects the deformation front of the Cascadia accretionary wedge. The rocks contained diagenetic carbonate cement that was precipitated from fluids expelled during accretion. Carbon, oxygen, and strontium isotope data are consistent with a fluid source at >2 km depth. Most carbon isotopes range from -1‰ to -25‰ (PDB [Peedee belemnitel] standard) consistent with a thermogenic methane source. Oxygen isotopes show extreme 18O depletions (-4‰ to -13‰ PDB) that are consistent with precipitation from fluids with temperatures as high as 100 °C. 87Sr/86Sr values of 0.70975 to 0.71279 may be due to strontium in fluids derived from clay-rich parts of the stratigraphic section. The ubiquity of carbonate precipitates and the isotope data indicate that the vertical fault zone is an efficient conduit for fluid dewatering from deep levels of the accretionary wedge.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.