Abstract

Recent advances in Proterozoic micropaleontology and sedimentary isotope geochemistry suggest that improved interbasinal correlation of Neoproterozoic (1000-540 Ma) successions is possible. Because widely varying interpretations of its age have been suggested and no reliable radiometric dates or paleomagnetic data are available, the upper Tindir Group of northwestern Canada provides an opportunity to test this hypothesis. The age of these strata is of paleontological importance because silicified carbonates near the top of the group contain disc-shaped-scale microfossils that may provide insights into the early evolution of biomineralization. A reinterpretation of upper Tindir microfossil assemblages suggests a late Riphean age. Although diagenesis and contact metamorphism have altered the isotopic compositions of some carbonates, least altered samples indicate that δ13C of contemporaneous seawater was at least +4.7‰, typical of Neoproterozoic, but not Cambrian, carbonates. Strontium isotopic compositions of the least altered samples yield values of ∼0.7065, which can be uniquely correlated with late Riphean seawater. Together, micropaleontology and the isotopic tracers of C and Sr constrain the upper Tindir carbonates and their unique fossils to be late Riphean, likely between 620 and 780 Ma.

First Page Preview

First page PDF preview
You do not currently have access to this article.