A new depositional model for hummocky cross-stratified sandstones is based on the following observations. (1) Storms transport coastal sand to the inner shelf under oscillatory-dominant combined flows exerting peak instantaneous bed shear stresses roughly normal to shore. (2) Isotropic hummocky cross-stratification is formed experimentally by large, three-dimensional, symmetrical bed forms generated by long-period, purely oscillatory flow and very strongly oscillatory-dominant combined flow. Anisotropic hummocky cross-stratification is formed by strongly oscillatory-dominant flow. (3) Grain fabric in hummocky sandstones indicates rapid reversals of bed shear stress consistent with deposition under a shore-normal oscillatory flow, initially superimposed on a relatively weak bottom current with a seaward-directed component of motion. Thus, shore-normal transport of coarse bedload on the inner shelf during storms (inferred from studies of ancient units) is caused by the interaction of high-speed oscillatory bottom motions under long-period shoaling waves and a relatively slow shore-oblique bottom current driven by geostrophically balanced coastal downwelling. Turbidity currents are not required to form shore-normal paleoflow indicators from hummocky beds. Large three-dimensional wave ripples generated by waning-storm or swell waves are responsible for much of the hummocky cross-stratification in the stratigraphic record.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.