Deep-imaging multifold seismic fines across submarine parts of the Cameroon volcanic line (west Africa-Gulf of Guinea) show asymmetric uplift of oceanic crust associated with extensive magmatism. The main pulse of uplift occurred after creation of a regional sequence boundary believed to be Miocene in age. The apparent synchroneity of uplift argues against the Cameroon line being a simple hotspot trace, as previously inferred. One plausible theory of origin for the seaward part of the Cameroon volcanic line and its asymmetric uplift geometry combines regional asthenospheric upwelling with restriction of magmatic egress to regularly spaced weak spots, corresponding to fracture-zone crossings. Horizontal motion and buckling also may have occurred along the Cameroon volcanic line.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.