Abstract

Recent attempts to calculate the average growth rate of continental crust for the Late Proterozoic shield of Arabia and Nubia are subject to large geological uncertainties, and widely contrasting conclusions result from dissimilar boundary conditions. The four greatest sources of divergence are (1) the extent of 620-920 Ma arc-terrane crust beneath Phanerozoic cover; (2) the extent of pre-920 Ma continental crust within the arc terranes; (3) the amount of postaccretion magmatic addition and erosion; and (4) the aggregate length and average life span of Late Proterozoic magmatic-arc systems that formed the Arabian-Nubian Shield. Calculations restricted to the relatively well known Arabian segment of the Arabian-Nubian Shield result in average crustal growth rates and arc accretion rates comparable to rates for modern arc systems, but we recognize substantial uncertainty in such results. Critical review of available geochemical, isotopic, and geochronological evidence contradicts the often stated notion that intact, pre-920 Ma crust is widespread in the eastern Arabian Shield. Instead, the arc terranes of the region apparently were "contaminated" with sediments derived, in part, from pre-920 Ma crust. Available geologic and radiometric data indicate that the Arabian-Nubian Shield and its "Pan-African" extensions constitute the greatest known volume of arc-accreted crust on Earth that formed in the period 920-620 Ma. Thus, the region may truly represent a disproportionate share of Earth's crustal growth budget for this time period.

First Page Preview

First page PDF preview
You do not currently have access to this article.