Abstract

The Windermere grit system in the southern Canadian Cordillera comprises the depositional record of a late Precambrian continental basin of uncertain tectonic affinity. Attempts to analyze the basin by means of these largely nonfossiliferous turbiditic rocks have been frustrated by a lack of chronostratigraphic marker units, a problem common in Precambrian sedimentary sequences. Stratigraphic analysis and regional mapping in the Cariboo Mountains (southeastern Canadian Cordillera) suggest that comparison of Precambrian sequences with Phanerozoic analogues holds promise for constructing chronologically significant sea-level lithostratigraphy. In the Cariboo and western Rocky mountains, a distinctive upward-thinning, dominantly pelitic succession (120 m thick) of rhythmic marble-silty pelite that is capped by a 20-m-thick carbonaceous sulfidic pelite represents a dramatic departure from sandy turbidite deposition and is interpreted as the depositional response of the turbidite system to eustatic sea-level rise. This marker unit appears to persist throughout Windermere grits in the southern Canadian Cordillera and, by analogy with well-constrained Phanerozoic examples of black shale deposition, is inferred to represent a synchronous basinwide highstand event. When analyzed within the context of black-shale depositional models, facies variations within the marker unit provide important constraints on basin shape, possibly water depth, and the magnitude of transcurrent fault movement in the southern Rocky Mountain trench.

First Page Preview

First page PDF preview
You do not currently have access to this article.