The three-dimensional geometry and kinematics of piggyback stacks of imbricate thrust sheets are illustrated and discussed using a single model shortened in a squeeze box. Strike-parallel geometric elements simulated include lateral ramps, eyed sheath folds, splays, and thrust/thrust interference. Fine details of these structures were exposed by eroding a shortened wedge of sand using a newly developed vacuum-eroding technique. A kinematic analysis of the model shows a stepwise increase in imbricate thrust spacing and/or a decrease in rate of nucleation of imbricate thrusts in the direction of thrust transport. Despite the steady forward advance of a rear wall, the piggyback wedge accreted episodically, recording different strain domains in longitudinal cross sections. Strain partitioning in single layers by bed-length balancing showed an increase in layer shortening with volume loss and a corresponding decrease in imbricate thrusting and ramp folding with depth.

First Page Preview

First page PDF preview
You do not currently have access to this article.