The Josephine ophiolite of the western Jurassic belt, Klamath Mountain province of California and Oregon, is the expression of a well-documented Late Jurassic suprasubduction zone rift basin that formed between an active Late Jurassic arc to the west and a remnant Middle Jurassic arc to the east. The Devils Elbow ophiolite remnant (DEO) exposed along the South Fork of the Trinity River represents the southernmost continuation of the Josephine ophiolite and provides important new constraints on the early history of this rift basin.

The DEO consists of pillow lavas and breccias and a well-developed sheeted dike complex that are depositionally overlain by a clast-supported breccia derived almost exclusively from ophiolitic detritus. Dikes and irregular pods of plagiogranite are conspicuous elements of the DEO and exhibit mutually crosscutting relations with mafic dikes; thus, they are interpreted as genetically related elements of the dike complex. Zircon separates from two widely separated plagiogranite dike localities yielded two distinct zircon populations: a clear, euhedral, magmatic population and a reddish, rounded xenocrystic population. The isotopic systematics of four zircon fractions from these two dike localities indicate a crystallization age for the DEO of 164 ±1 Ma and an age of ∼1.7 Ga for the xenocrystic zircon component.

The occurrence of a xenocrystic Precambrian zircon component within the plagiogranites of the DEO provides unequivocal evidence that rifting occurred within preexisting zircon-bearing crustal rocks of the Klamath Mountains. As there is no Precambrian crust within the Klamath Mountains, the xenocrystic zircon population must have been derived from supracrustal sedimentary sequences. The most likely source for the older zircon component is a terrigenous metasedimentary sequence contained within the Rattlesnake Creek terrane, which formed part of the structural basement of the rifted Middle Jurassic arc.

The incorporation of xenocrystic Precambrian zircon from the rifted basement of the Middle Jurassic arc could only have occurred during the earliest stages of rifting. Thus, the DEO must represent a fragment of an initial rift that ultimately formed the Late Jurassic basin now floored by the Josephine ophiolite. In support of the zircon data, dikes and lavas of the DEO have geochemical characteristics transitional between island arc and mid-ocean ridge magma series, as would be expected within an initial rift setting of a suprasubduction zone ophiolite.

First Page Preview

First page PDF preview
You do not currently have access to this article.