Abstract

To test the possibility that aluminosilicate liquids exhibit pressure-induced transformations, particularly involving changes in the coordination of aluminum, we determined melting relationships for the feldspar-bearing systems NaAlSi3O8-SiO2, KAlSi3O8-SiO2, and CaAl2Si2O8-SiO2 from 1 atm to 25 kbar. Albite and anorthite behave similarly in that they, and presumably liquids of these compositions, transform at high pressures to jadeite, kyanite, corundum, and other structures with aluminum in six-fold coordination, releasing SiO2 component. This results in a large increase in the activity of SiO2 component in the liquid (alqz), which is manifested by a significant decrease in the melting-point depression of albite and of anorthite by the addition of quartz at pressures above ∼15 kbar. In contrast, sanidine does not transform to denser phases at pressures below at least 100 kbar, but it melts incongruently to leucite + SiO2-rich liquid up to ∼ 15 kbar. This produces a relatively large alqz and a small freezing-point depression by quartz below this pressure; the opposite holds above ∼15 kbar. These results support the concept that significant structural changes, including coordination changes in aluminum, occur in magmas in the upper mantle.

First Page Preview

First page PDF preview
You do not currently have access to this article.