Steps leading to development of the modern photic-based marine food web are postulated as the result of modifications of the environment, enhanced by the activity of Archean sulfur chemoautotrophs. Such organisms (Anoxium) evolved in an anoxic ocean prior to 3.9 × 109 yr ago at Archean analogs of modern oceanic hydrothermal vents. At this time geothermal energy was more readily available to organisms than photic energy, given atmospheric conditions at the surface similar to Venus, where intensity is low and only middle and red visible wavelengths penetrate the cloudy CO2-rich atmosphere. Competition for the reduced sulfur developed due to oxidation and loss of sulfur to sediments. Consequently, evolutionary advantage shifted to Anoxium isolates that could use alternate energy sources such as light to supplement the diminished supplies of reduced sulfur. Initially, photo-sulfur organisms evolved similar to modern purple bacteria that absorb in the red visible spectra. Subsequent carbon fixing and oxidation improved both the quantity and range of light reaching the ocean surface. This permitted absorption in the blue visible range so that water splitting was now feasible, releasing free oxygen and accelerating oxidation. Eventually, reducing environments became restricted, completing the shift in the principal marine carbon-fixing activity from anoxic chemoautotrophic to aerobic photosynthetic organisms.

First Page Preview

First page PDF preview
You do not currently have access to this article.