Classic Concepts and New Directions: Exploring 125 Years of GSA Discoveries in the Rocky Mountain Region

The Rocky Mountain Region has been the subject of continuous, exhaustive scientific work since the first organized geologic trips to the area began in the 1860s. Despite almost 150 years of scrutiny, the region's magnificent geology continues to challenge, perplex, and astound modern geoscientists. It is a testing ground for geologists and for big geologic ideas. This volume, prepared for the 2013 GSA Annual Meeting in Denver, Colorado, serves both as a progress report on what we have learned over those years of study and a guide to forthcoming scientific questions about the region. The guide's fourteen chapters, which span the region's 1.7-billion-year history, give a retrospective glimpse of early geologic ideas being forged, bring the latest mapping and analytical results from classic locations, and introduce techniques that will form the bedrock of our geologic understanding in the years to come.
Laramide basin CSI: Comprehensive stratigraphic investigations of Paleogene sediments in the Colorado Headwaters Basin, north-central Colorado Available to Purchase
-
Published:January 01, 2013
-
CiteCitation
Marieke Dechesne, James C. Cole, James H. Trexler, Jr., Patricia H. Cashman, Christopher D. Peterson, 2013. "Laramide basin CSI: Comprehensive stratigraphic investigations of Paleogene sediments in the Colorado Headwaters Basin, north-central Colorado", Classic Concepts and New Directions: Exploring 125 Years of GSA Discoveries in the Rocky Mountain Region, Lon D. Abbott, Gregory S. Hancock
Download citation file:
- Share
Abstract
The Paleogene sedimentary deposits of the Colorado Headwaters Basin provide a detailed proxy record of regional deformation and basin subsidence during the Laramide orogeny in north-central Colorado and southern Wyoming. This field trip presents extensive evidence from sedimentology, stratigraphy, structure, palynology, and isotope geochronology that shows a complex history that is markedly different from other Laramide synorogenic basins in the vicinity.
We show that the basin area was deformed by faulting and folding before, during, and after deposition of the Paleogene rocks. Internal unconformities have been identified that further reflect the interaction of deformation, subsidence, and sedimentation. Uplift of Proterozoic basement blocks that make up the surrounding mountain ranges today occurred late in basin history. Evidence is given to reinterpret the Independence Mountain uplift as the result of significant normal faulting (not thrusting), probably in middle Tertiary time.
While the Denver and Cheyenne Basins to the east were subsiding and accumulating sediment during Late Cretaceous time, the Colorado Headwaters Basin region was experiencing vertical uplift and erosion. At least 1200 m of the upper part of the marine Upper Cretaceous Pierre Shale was regionally removed, along with Fox Hills Sandstone shoreline deposits of the receding Interior Seaway as well as any Laramie Formation–type continental deposits. Subsidence did not begin in the Colorado Headwaters Basin until after 60.5 Ma, when coarse, chaotic, debris-flow deposits of the Paleocene Windy Gap Volcanic Member of the Middle Park Formation began to accumulate along the southern basin margin. These volcaniclastic conglomerate deposits were derived from local, mafic-alkalic volcanic sources (and transitory deposits in the drainage basin), and were rapidly transported into a deep lake system by sediment gravity currents. The southern part of the basin subsided rapidly (roughly 750–1000 m/m.y.) and the drainage system delivered increasing proportions of arkosic debris from uplifted Proterozoic basement and more intermediate-composition volcanic-porphyry materials from central Colorado sources.
Other margins of the Colorado Headwaters Basin subsided at slightly different times. Subsidence was preceded by variable amounts of gentle tilting and localized block-fault uplifts. The north-central part of the basin that was least-eroded in early Paleocene time was structurally inverted and became the locus of greatest subsidence during later Paleocene-Eocene time. Middle Paleocene coal-mires formed in the topographically lowest eastern part of the basin, but the basin center migrated to the western side by Eocene time when coal was deposited in the Coalmont district. In between, persistent lakes of variable depths characterized the central basin area, as evidenced by well-preserved deltaic facies.
Fault-fold deformation within the Colorado Headwaters Basin strongly affected the Paleocene fluvial-lacustrine deposits, as reflected in the steep limbs of anticline-syncline pairs within the McCallum fold belt and the steep margins of the Breccia Spoon syncline. Slivers of Proterozoic basement rock were also elevated on steep reverse faults in late Paleocene time along the Delaney Butte–Sheep Mountain–Boettcher Ridge structure. Eocene deposits, by and large, are only gently folded within the Colorado Headwaters Basin and thus reflect a change in deformation history.
The Paleogene deposits of the Colorado Headwaters Basin today represent only a fragment of the original extent of the depositional basin. Basal, coarse conglomerate deposits that suggest proximity to an active basin margin are relatively rare and are limited to the southern and northwestern margins of the relict basin. The northeastern margin of the preserved Paleogene section is conspicuously fine-grained, which indicates that any contemporaneous marginal uplift was far removed from the current extent of preserved fluvial-lacustrine sediments. The conspicuous basement uplifts of Proterozoic rock that flank the current relict Paleogene basin deposits are largely post-middle Eocene in age and are not associated with any Laramide synuplift fluvial deposits.
The east-west–trending Independence Mountain fault system that truncates the Colorado Headwaters Basin on the north with an uplifted Proterozoic basement block is reinterpreted in this report. Numerous prior analyses had concluded that the fault was a low-angle, south-directed Laramide thrust that overlapped the northern margin of the basin. We conclude instead that the fault is more likely a Neogene normal fault that truncates all prior structure and belongs to a family of sub-parallel west-northwest–trending normal faults that offset upper Oligocene-Miocene fluvial deposits of the Browns Park–North Park Formations.
- basin inversion
- basins
- Cenozoic
- clastic rocks
- Colorado
- Colorado River
- conglomerate
- debris flows
- deformation
- Denver Basin
- Elko County Nevada
- erosion
- faults
- field trips
- folds
- guidebook
- Independence Mountains
- lacustrine environment
- lake sediments
- Laramide Orogeny
- mass movements
- Medicine Bow Mountains
- Nevada
- North America
- Paleogene
- road log
- Rocky Mountains
- sedimentary rocks
- sediments
- stratigraphy
- subsidence
- tectonics
- Tertiary
- U. S. Rocky Mountains
- unconformities
- United States
- uplifts
- volcaniclastics
- Cheyenne Basin
- Middle Park Formation
- McCallum Anticline
- Colorado Headwaters Basin