Man-Induced Land Subsidence
How would you feel if your land had sunk 9 m in the past 50 years because of human activity? It happened in the San Joaquin Valley. In fact, land subsidence has been caused by man’s activities in at least 37 of the 50 states of the United States and affects more than 40,000 km2 in this country alone. Data from a few sites where economic impact is documented suggest a total annual cost to the nation of more than $100 million; worldwide, the total economic impact is astounding and growing. These nine papers, dedicated to Joseph Fairfield Poland's life work, constitute a major contribution to measuring and understanding this problem. They are arranged in three categories: (1) fluid withdrawal from porous media; (2) drainage of organic soil; and (3) collapse into man-made and natural cavities.
Subsidence due to geothermal fluid withdrawal
-
Published:January 01, 1984
Abstract
Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the United States, and elsewhere. Vertical ground displacements of up to 4.5 m and horizontal ground displacements of up to 0.5 m have been observed at Wairakei, New Zealand, that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy, and Cerro Prieto, Mexico. Observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence, and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant thermal mechanisms. Although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.
- Australasia
- Baja California Mexico
- Broadlands
- California
- causes
- deformation
- displacements
- drawdown
- engineering geology
- Europe
- field studies
- geothermal energy
- geothermal fields
- ground water
- Imperial County California
- Italy
- land subsidence
- Mexico
- models
- movement
- New Zealand
- observations
- prediction
- pumping
- reservoir rocks
- Southern Europe
- surveys
- Texas
- United States
- Chocolate Bayou
- Larderella