Skip to Main Content
Skip Nav Destination

Despite being present in the target sequence of ∼70% of the world's known impact structures, the response of sedimentary rocks to hypervelocity impact remains poorly understood. Of particular significance is the relative importance and role of impact melting versus decomposition in carbonate and sulfate lithologies. In this work, we review experimental evidence and phase equilibria and synthesize these data with observations from studies of naturally shocked rocks from several terrestrial impact sites. Shock experiments on carbonates and sulfates currently provide contrasting and ambiguous results. Studies of naturally shocked materials indicate that impact melting is much more common in sedimentary rocks than previously thought. This is in agreement with the phase relations for calcite. A summary of the criteria for the recognition of impact melts derived from sedimentary rocks is presented, and it is hoped that this will stimulate further studies of impact structures in sedimentary target rocks. This assessment leads us to conclude that impact melting is common during hypervelocity impact into both crystalline and sedimentary rocks. However, the products are texturally and chemically distinct, which has led to much confusion in the past, particularly in terms of the recognition of impact melts derived from sedimentary rocks.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal