Skip to Main Content
Skip Nav Destination

The Eastern belt of the Sierra Nevada comprises an Ordovician(?) to Devonian(?) succession of psammites and pelites belonging to the Shoo Fly Complex, and is overlain by three Paleozoic to Mesozoic arc volcanic sequences. The northern part of the belt, the subject of this chapter, is divided into a series of discrete blocks by steeply dipping faults, considered to be eastward-directed thrusts. The metamorphic history of this region has been little investigated previously. It has been argued that low-grade metamorphism of the Eastern belt is a Nevadan orogenic effect; in contrast, it has also been suggested that metamorphism of the arc volcanic rocks was a result of burial effects in the arc environment. In this study the metamorphic grade of the area has been established using mineral assemblages in metabasites and pelites, combined with illite crystallinity and b 0 data from pelitic rocks. The Shoo Fly Complex underwent epizonal metamorphism under Barrovian-type conditions prior to the earliest arc volcanism. Metamorphic grade in the overlying arc volcanic rocks ranges from pumpellyite-actinolite facies in the strongly foliated rocks of the (westernmost) Butt Valley and Hough blocks, through prehnite-pumpellyite facies in the Keddie Ridge and Genesee blocks, to low anchizone to diagenetic grade in Jurassic rocks of the (easternmost) Mt. Jura and Kettle Rock blocks. There is evidence for at least three discrete regional metamorphic events in these arc rocks; one is interpreted as being related to the burial of the arc volcanic rocks, which reached prehnite-pumpellyite facies; this event was followed by deformation and pumpellyite-actinolite facies metamorphism during the Nevadan orogeny; a final episode of static, low-grade metamorphism, possibly due to tectonic loading effects, probably also resulted in pumpellyite-actinolite facies. Subsequently, rocks exposed in the extreme east of the region were affected by contact metamorphism during the emplacement of Sierra Nevada batholith granitoids.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal