From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez
CONTAINS OPEN ACCESS

This volume pays tribute to the great career and extensive and varied scientific accomplishments of Walter Alvarez, on the occasion of his 80th birthday in 2020, with a series of papers related to the many topics he covered in the past 60 years: Tectonics of microplates, structural geology, paleomagnetics, Apennine sedimentary sequences, geoarchaeology and Roman volcanics, Big History, and most famously the discovery of evidence for a large asteroidal impact event at the Cretaceous–Tertiary (now Cretaceous–Paleogene) boundary site in Gubbio, Italy, 40 years ago, which started a debate about the connection between meteorite impact and mass extinction. The manuscripts in this special volume were written by many of Walter’s close collaborators and friends, who have worked with him over the years and participated in many projects he carried out. The papers highlight specific aspects of the research and/or provide a summary of the current advances in the field.
Deccan volcanism at K-Pg time
*Corresponding author: prenne@bgc.org.
-
Published:June 21, 2022
-
CiteCitation
Tushar Mittal, Courtney J. Sprain, Paul R. Renne*, Mark A. Richards, 2022. "Deccan volcanism at K-Pg time", From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez, Christian Koeberl, Philippe Claeys, Alessandro Montanari
Download citation file:
- Share
ABSTRACT
The last major mass extinctions in Earth history (e.g., end-Guadalupian, end-Permian, end-Triassic, and end-Cretaceous) are all correlated closely in time with the main-phase eruptions of major flood basalt provinces (Emeishan, Siberian, Central Atlantic Magmatic Province, and Deccan Traps, respectively). The causal relationship between flood volcanism and mass extinction is not clear, but likely involves the climate effects of outgassed volatile species such as CO2, SO2, Cl, F, etc., from some combination of magma and country rocks. In a surprising “coincidence,” the end-Cretaceous (K-Pg boundary) micro-faunal extinction also corresponds precisely in time to what may have been the largest meteor impact of the past billion years of Earth history, the Chicxulub crater at 66.05 Ma. The Deccan Traps eruptions were under way well before K-Pg/Chicxulub time and are most likely the result of the mantle plume “head” that initiated the presently active Reunion hotspot track—thus the Deccan Traps were clearly not generated, fundamentally, by the impact. However, recent high-precision 40Ar/39Ar geochronology indicates that conspicuous changes in basalt geochemistry, lava flow morphology, emplacement mode, and a possible 50% increase in eruption rate at the Lonavala/Wai subgroup transition in the Deccan Traps lava group corresponded, within radioisotopic age precision, to the K-Pg boundary and the Chicxulub impact. This has led to the testable hypothesis that the Mw ~11 seismic disturbance of the Chicxulub impact may have affected the Deccan eruptions. Here we review a broad landscape of evidence regarding Deccan volcanism and its relation to the K-Pg boundary and attempt to define what we see as the most important questions than can and should be answered by further research to better understand both the onshore and largely unknown offshore components of Deccan-related volcanism, and what their climate and environmental impacts at K-Pg time may have been.