From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez
CONTAINS OPEN ACCESS

This volume pays tribute to the great career and extensive and varied scientific accomplishments of Walter Alvarez, on the occasion of his 80th birthday in 2020, with a series of papers related to the many topics he covered in the past 60 years: Tectonics of microplates, structural geology, paleomagnetics, Apennine sedimentary sequences, geoarchaeology and Roman volcanics, Big History, and most famously the discovery of evidence for a large asteroidal impact event at the Cretaceous–Tertiary (now Cretaceous–Paleogene) boundary site in Gubbio, Italy, 40 years ago, which started a debate about the connection between meteorite impact and mass extinction. The manuscripts in this special volume were written by many of Walter’s close collaborators and friends, who have worked with him over the years and participated in many projects he carried out. The papers highlight specific aspects of the research and/or provide a summary of the current advances in the field.
The contrasting geologic record of inferred “hot” intraoceanic and “cold” continental margin subduction initiation
-
Published:June 21, 2022
-
CiteCitation
John Wakabayashi*, David H. Shimabukuro*, 2022. "The contrasting geologic record of inferred “hot” intraoceanic and “cold” continental margin subduction initiation", From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez, Christian Koeberl, Philippe Claeys, Alessandro Montanari
Download citation file:
- Share
ABSTRACT
Two contrasting field relationships may reflect different tectonic settings of subduction initiation preserved in orogenic belts. “Hot” subduction initiation assemblages include a large ophiolite unit (up to kms thick, extending tens to hundreds of km along strike) with supra subduction zone (SSZ) geochemical affinity that structurally overlies a thin (<500 m thick) sheet of high-pressure (HP), high-temperature (HT), primarily metamafic rocks called a metamorphic sole. The ophiolite generally lacks burial metamorphism and includes variably serpentinized peridotite at its base. The sole structurally overlies subduction complex rocks made up of oceanic materials (igneous part of oceanic crust and overlying pelagic sedimentary rocks, and clastic sedimentary rocks of trench fill affinity) and/or passive margin assemblages; some of the subduction complex may be metamorphosed under HP-low temperature (LT) conditions (such as blueschist facies). The field relationships suggest initiation of subduction within young (<15 My) and “hot” oceanic lithosphere and that the sole represents the first slice(s) of material transferred from the subducting to upper plate. Examples include the Neotethyan and northern Appalachian ophiolites and units beneath them, and the Coast Range ophiolite and subjacent Franciscan subduction complex of California.
“Cold” subduction initiation assemblages lack SSZ ophiolite and island arc components and a metamorphic sole. Instead, the upper plate above the subduction complex is made up of continental lithosphere that last experienced significant heating during a passive-margin forming rift event. The protoliths of the rocks subducted were >70 My in age at the time of subduction initiation. The HP-LT subduction complex is composed of slices of continental crust and oceanic crust representing parts of a hyperextended continental margin. These field relationships suggest initiation of subduction along a continental margin within old (“cold”) hyperextended continental lithosphere. Examples include the Apennine subduction zone, exposed in Calabria, Italy, and the Alpine orogenic belt, both remnants of the Alpine Tethys.