From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez
CONTAINS OPEN ACCESS

This volume pays tribute to the great career and extensive and varied scientific accomplishments of Walter Alvarez, on the occasion of his 80th birthday in 2020, with a series of papers related to the many topics he covered in the past 60 years: Tectonics of microplates, structural geology, paleomagnetics, Apennine sedimentary sequences, geoarchaeology and Roman volcanics, Big History, and most famously the discovery of evidence for a large asteroidal impact event at the Cretaceous–Tertiary (now Cretaceous–Paleogene) boundary site in Gubbio, Italy, 40 years ago, which started a debate about the connection between meteorite impact and mass extinction. The manuscripts in this special volume were written by many of Walter’s close collaborators and friends, who have worked with him over the years and participated in many projects he carried out. The papers highlight specific aspects of the research and/or provide a summary of the current advances in the field.
Detailed mapping and paleostress analysis of active faults in the northern Vettore–Bove fault zone, Sibillini Mountains, Italy
-
Published:June 21, 2022
-
CiteCitation
Kevin G. Stewart, Rachel Boulter, 2022. "Detailed mapping and paleostress analysis of active faults in the northern Vettore–Bove fault zone, Sibillini Mountains, Italy", From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez, Christian Koeberl, Philippe Claeys, Alessandro Montanari
Download citation file:
- Share
ABSTRACT
The Sibillini Mountains, which make up the southern part of the Umbria-Marche Apennines, were struck by a series of earthquakes in 2016, including five with magnitudes greater than 5. The largest event, Mw 6.5, occurred on 30 October 2016. A Mw 5.9 earthquake on 26 October ruptured several faults in the northern third of the Vettore–Bove fault system, and the Mw 6.5 event produced surface ruptures along the entire 30-km length. Ground surveys conducted shortly after these earthquakes showed that many, but not all, of the surface ruptures corresponded to previously mapped faults. Also, some faults that had been mapped as Quaternary did not produce surface ruptures during the earthquakes. In this study, we present the results of detailed field mapping that was conducted prior to the 2016 earthquakes and provide evidence that all of the surface ruptures in the northern part of the Vettore–Bove fault system occurred along preexisting faults. Paleostress analysis shows that the reactivated faults had been active prior to 2016 in stress fields with similar orientations to the modern-day stress field. In addition, we show that one fault segment, which is the southern continuation of a major fault that slipped during the 2016 earthquakes, was not reactivated because it was unfavorably oriented.