Plate Tectonics, Ophiolites, and Societal Significance of Geology: A Celebration of the Career of Eldridge Moores
This volume honors Eldridge Moores, one of the most accomplished geologists of his generation. The volume starts with a summary of Moores’ achievements, along with personal dedications and memories from people who knew him. Leading off the volume’s 12 chapters of original scientific contributions is Moores’ last published paper that presents an example of the Historical Contingency concept, which suggested that earlier subduction history may result in supra-subduction zone geochemical signatures for some magmas formed in non-subduction environments. Other chapters highlight the societal significance of geology, the petrogenesis of ophiolites, subduction zone processes, orogenic belt evolution, and other topics, covering the globe and intersecting with Moores’ interests and influences.
Is geoheritage a “cutting-edge” science? Promotion of an extension to the definition of geoheritage with emphasis as a significant discipline in geosciences with cultural and societal relevance
-
Published:September 09, 2021
-
CiteCitation
Anne Ewing Rassios*, Giovanni Grieco, 2021. "Is geoheritage a “cutting-edge” science? Promotion of an extension to the definition of geoheritage with emphasis as a significant discipline in geosciences with cultural and societal relevance", Plate Tectonics, Ophiolites, and Societal Significance of Geology: A Celebration of the Career of Eldridge Moores, John Wakabayashi, Yildirim Dilek, John Wakabayashi
Download citation file:
- Share
ABSTRACT
Geoheritage documentation is critical for the academic community, and thus incurs an expense to the general public, who may or may not feel the need to fund such an “academic” database. Fortunately, this documentation helps foster appreciation of geosites within a geotouristic framework and can inspire a nationalistic sense of pride, thus bringing about an economic incentive to countries actively involved in geoheritage research and documentation. Yet there remains a prejudice within academia that geoheritage is a descriptive field, is arbitrarily qualitative, and lacks the capacity to create new and important scientific discoveries. We present herein a description and discussion of the results of applying “cutting-edge” science in a geoheritage framework with ample examples from Greece and two case studies of its application. The first of these is The Aliakmon Legacy Project of Northern Greece that necessitated modern documentation to preserve its heritage base when plate tectonic global geoheritage localities were flooded. The second summarizes the geologic history of the Meteora World Heritage Site with an emphasis on how its long complex geologic history ultimately resulted in the Byzantine Monastic community. We propose this paper as a discussion model for the integration of primary geologic research with cultural heritage localities and emphasize that these promise to elevate geoheritage studies to a scale critical for documentation of human civilization itself. It is our opinion that geoheritage is capable of becoming a dynamic field of study in which documentation and preservation expands to integrate renewed multidisciplinary research that in turn comprises the scientific foundation of a “new” cutting-edge geologic field of study.