Skip to Main Content
Skip Nav Destination

Ophiolite complexes represent fragments of ocean crust and mantle formed at spreading centers and emplaced on land. The setting of their origin, whether at mid-ocean ridges, back-arc basins, or forearc basins has been debated. Geochemical classification of many ophiolite extrusive rocks reflect an approach interpreting their tectonic environment as the same as rocks with similar compositions formed in various modern oceanic settings. This approach has pointed to the formation of many ophiolitic extrusive rocks in a supra-subduction zone (SSZ) environment. Paradoxically, structural and stratigraphic evidence suggests that many apparent SSZ-produced ophiolite complexes are more consistent with mid-ocean ridge settings. Compositions of lavas in the southeastern Indian Ocean resemble those of modern SSZ environments and SSZ ophiolites, although Indian Ocean lavas clearly formed in a mid-ocean ridge setting. These facts suggest that an interpretation of the tectonic environment of ophiolite formation based solely on their geochemistry may be unwarranted.

New seismic images revealing extensive Mesozoic subduction zones beneath the southern Indian Ocean provide one mechanism to explain this apparent paradox. Cenozoic mid-ocean-ridge–derived ocean floor throughout the southern Indian Ocean apparently formed above former sites of subduction. Compositional remnants of previously subducted mantle in the upper mantle were involved in generation of mid-ocean ridge lavas. The concept of historical contingency may help resolve the ambiguity on understanding the environment of origin of ophiolites. Many ophiolites with “SSZ” compositions may have formed in a mid-ocean ridge setting such as the southeastern Indian Ocean.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal