In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science
This unusual book, published to honor the late iconoclast and geologist extraordinaire Warren Bell Hamilton, comprises a diverse, cross-disciplinary collection of bold new ideas in Earth and planetary science. Some chapters audaciously point out all-too-obvious deficits in prevailing theories. Other ideas are embryonic and in need of testing and still others are downright outrageous. Some are doubtless right and others likely wrong. See if you can tell which is which. See if your students can tell which is which. This unique book is a rich resource for researchers at all levels looking for interesting, unusual, and off-beat ideas to investigate or set as student projects.
Earthquake weather and climate change: Should we stress about the forecast?
-
Published:May 03, 2022
-
CiteCitation
Miles P. Wilson, Gillian R. Foulger, Christopher Saville, Samuel P. Graham, Bruce R. Julian, 2022. "Earthquake weather and climate change: Should we stress about the forecast?", In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science, Gillian R. Foulger, Lawrence C. Hamilton, Donna M. Jurdy, Carol A. Stein, Keith A. Howard, Seth Stein
Download citation file:
- Share
ABSTRACT
Relationships between the weather and earthquakes have been suspected for over 2400 yr. However, scientific evidence to support such relationships has grown only since the 1980s. Because faults in Earth’s crust are generally regarded as critically stressed, small changes in stress and pore-fluid pressure brought about by rainfall, snow, and atmospheric pressure and temperature variations have all been proposed to modulate seismicity at local and regional scales. Elastic static stress changes as low as 0.07 kPa and pore-fluid pressure changes as low as 0.5 kPa have been proposed to naturally trigger earthquakes. In the UK, the spatial distributions of onshore earthquakes and rainfall are highly nonuniform and may be related; the wetter and most naturally seismically active areas occur on the west side of the country. We found significant spatial and temporal relationships between rainfall amount and the number of earthquakes for 1980–2012, suggesting larger volumes of rainfall promote earthquake nucleation. Such relationships occur when human-induced seismicity is included or excluded, indicating that meteorological conditions can also modulate seismicity induced by subsurface anthropogenic activities such as coal mining. No significant relationships were observed for monthly time lags, suggesting that the triggering effect of rainfall in the UK is near-instantaneous or occurs within 1 mo. With global climate changing rapidly and extreme weather events occurring more frequently, it is possible that some global regions may also experience changes in the spatial and temporal occurrence of earthquakes in response to changes in meteorologically induced stress perturbations.
- atmospheric precipitation
- climate change
- coupling
- earthquake prediction
- earthquakes
- Europe
- human activity
- hydrology
- induced earthquakes
- loading
- meteorology
- pore pressure
- pore water
- rain
- rainfall
- seasonal variations
- shear
- slip rates
- snow
- storms
- stress
- United Kingdom
- variations
- Western Europe
- stress changes
- extreme weather events
- mining induced earthquakes