In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science
This unusual book, published to honor the late iconoclast and geologist extraordinaire Warren Bell Hamilton, comprises a diverse, cross-disciplinary collection of bold new ideas in Earth and planetary science. Some chapters audaciously point out all-too-obvious deficits in prevailing theories. Other ideas are embryonic and in need of testing and still others are downright outrageous. Some are doubtless right and others likely wrong. See if you can tell which is which. See if your students can tell which is which. This unique book is a rich resource for researchers at all levels looking for interesting, unusual, and off-beat ideas to investigate or set as student projects.
Volcano distribution and tectonics: A planetoidic perspective
-
Published:May 03, 2022
-
CiteCitation
Edgardo Cañón-Tapia*, 2022. "Volcano distribution and tectonics: A planetoidic perspective", In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science, Gillian R. Foulger, Lawrence C. Hamilton, Donna M. Jurdy, Carol A. Stein, Keith A. Howard, Seth Stein
Download citation file:
- Share
ABSTRACT
Volcanic activity is ultimately controlled by processes that take place many kilometers beneath the surface of a planet. The deeper processes are unlikely to reach the surface without some degree of modification at shallower levels. Nevertheless, traces of those deeper processes may still be found when examining the final products at the surface. In this work, it is shown that it is possible to gain insights concerning the integrated contribution of deep structures through the study of the spatial distribution of volcanic vents at the surface. The method here described relies on the systematic use of increasing smoothing factors in Gaussian kernel estimations. The sequences of probability density functions thus generated are equivalent to images obtained with an increasing wavelength, which therefore have the power to penetrate deeper below the surface. Although the resolution of this method is much smaller than the resolution provided by seismic or other geophysical surveys, it has the advantages of ease of implementation, extremely low cost, and remote application. Thus, the reported method has great value as a first-order exploration tool to investigate the deep structure of a planet, and it can make important contributions to our understanding of the volcano-tectonic relationship, not only on Earth, but also across the various bodies of the solar system where volcanic activity has been documented.
- Asia
- Commonwealth of Independent States
- computed tomography
- continental drift
- deep-seated structures
- depth
- global
- Kamchatka Peninsula
- Kamchatka Russian Federation
- magma chambers
- magma transport
- magmas
- mantle
- mantle plumes
- planetary interiors
- plate boundaries
- plate tectonics
- plumes
- Russian Federation
- spatial distribution
- spatial variations
- tomography
- transport
- volcanism
- volcanoes
- probability density functions
- magma storage
- Tolbachinskiy Dol