In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science
This unusual book, published to honor the late iconoclast and geologist extraordinaire Warren Bell Hamilton, comprises a diverse, cross-disciplinary collection of bold new ideas in Earth and planetary science. Some chapters audaciously point out all-too-obvious deficits in prevailing theories. Other ideas are embryonic and in need of testing and still others are downright outrageous. Some are doubtless right and others likely wrong. See if you can tell which is which. See if your students can tell which is which. This unique book is a rich resource for researchers at all levels looking for interesting, unusual, and off-beat ideas to investigate or set as student projects.
Dependence of discharge, channel area, and flow velocity on river stage and a refutation of Manning’s equation
-
Published:May 03, 2022
-
CiteCitation
Robert E. Criss*, 2022. "Dependence of discharge, channel area, and flow velocity on river stage and a refutation of Manning’s equation", In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science, Gillian R. Foulger, Lawrence C. Hamilton, Donna M. Jurdy, Carol A. Stein, Keith A. Howard, Seth Stein
Download citation file:
- Share
ABSTRACT
Field data reveal how the discharge (Q), channel area (A), and average water velocity (Vavg) of natural streams functionally depend on the effective stage (h) above channel bottom. A graphical technique allows the level that corresponds to a dry channel, denoted “h0,” to be determined, permitting the dependent variables Q, A, and Vavg to all be expressed as simple functions of h, equal to hL – h0, where hL is the local stage that is typically reported relative to an arbitrary, site-specific datum. Once h0 is known, plots of log Q, log A, and log Vavg versus log h can be constructed using available data. These plots define strong, nearly linear trends for which the slopes (1) quantify the power relationships among these variables; (2) show that Vavg varies nearly linearly with h, unlike behaviors assumed in the Chezy and Manning equations; (3) distinguish the individual contributions of A and Vavg to discharge, which is their product; (4) provide quantitative means with which to compare different sites; and (5) offer new insights into the character and dynamics of natural streams.