Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary
CONTAINS OPEN ACCESS
Mount Diablo and the geology of the Central California Coast Ranges are the subject of a volume celebrating the Northern California Geological Society’s 75th anniversary. The breadth of research illustrates the complex Mesozoic to Cenozoic tectonic evolution of the plate boundary. Recent faulting and folding along the eastern edge of the San Andreas system have exposed in the mountain a core of Franciscan accretionary wedge complex faulted against Cretaceous and Cenozoic forearc strata. The Memoir includes papers on structure, stratigraphy, tephrochronology, zircon provenance studies, apatite fission track analyses, and foraminifera and calcareous plankton assemblages tied to Cenozoic climate events. Chapters also address the history of geologic work in the area and the resource development of oil and gas, mercury, coal, and sand, and road aggregate.
Erosion due to a century of road construction and maintenance at Mount Diablo State Park, California
-
Published:September 27, 2021
-
CiteCitation
Michael S. Fuller, Peter D. Roffers, 2021. "Erosion due to a century of road construction and maintenance at Mount Diablo State Park, California", Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary, Raymond Sullivan, Doris Sloan, Jeffrey R. Unruh, David P. Schwartz
Download citation file:
- Share
ABSTRACT
Mount Diablo State Park exemplifies many other conservation areas where managers balance the dual missions of protecting natural resources while providing public access. Roads and trails that crisscross the park are etched into the geomorphic surface, capturing and redirecting storm runoff, and presenting both a challenge for soil conservation and a consequence of construction and maintenance.
We used field mapping, remote sensing, and modeling to assess erosion along the roads and trails in Mount Diablo State Park, which encompasses the headwaters of several urbanized watersheds. The field mapping in 2011 determined that 56% of the assessed roads and trails required either repair or reconstruction to control erosion and that ~67% of the culverts in the park required either repair or replacement. Aerial photography and modeling showed that other erosion (unrelated to roads or trails) preferentially occurred during wet periods, in specific lithologies, and on convergent slopes.
Although lithology and climate drive slope-forming geomorphic processes, we found that the road and trail system (1) expanded the stream network with a capillary-like system of rills, (2) catalyzed prolonged erosion, and (3) altered the timing and pattern of sediment yield. In addition to water-driven erosion during wet periods, road and trail surfaces were subject to mechanical and wind erosion during dry periods. Spatially, dry erosion and runoff both conformed with and crossed topographic gradients by following the road and trail network. Road- and trail-induced erosion occurred across a wider range of rock properties and slope geometries than is typical for other erosion. Hence, the roads and trails have expanded the spatial and temporal boundary conditions over which geomorphic processes operate and, due to continual soil disturbance, have accelerated erosion rates.
Although road density is a commonly used metric to rank road-related impacts at watershed scales, it misses both spatial variability and the opportunity to identify specific road and trail segments for remediation. We developed a spatially explicit scoring scheme based on actual erosion and the potential for sedimentation of discrete waterbodies. The data were incorporated into the park’s road and trail management plan in 2016.
- aerial photography
- atmospheric precipitation
- California
- conservation
- construction
- Contra Costa County California
- culverts
- drainage patterns
- erosion
- erosion control
- human activity
- hydrology
- land management
- land use
- landform evolution
- landforms
- landslides
- mapping
- mass movements
- natural resources
- remote sensing
- rills
- roads
- runoff
- sediment yield
- sedimentation
- slopes
- soil erosion
- soil management
- soils
- spatial variations
- stormwater
- topography
- United States
- urbanization
- water erosion
- water resources
- watersheds
- Mount Diablo
- Mount Diablo State Park