Large Meteorite Impacts and Planetary Evolution VI
CONTAINS OPEN ACCESS
This volume represents the proceedings of the homonymous international conference on all aspects of impact cratering and planetary science, which was held in October 2019 in Brasília, Brazil. The volume contains a sizable suite of contributions dealing with regional impact records (Australia, Sweden), impact craters and impactites, early Archean impacts and geophysical characteristics of impact structures, shock metamorphic investigations, post-impact hydrothermalism, and structural geology and morphometry of impact structures—on Earth and Mars. Many contributions report results from state-of-the-art investigations, for example, several that are based on electron backscatter diffraction studies, and deal with new potential chronometers and shock barometers (e.g., apatite). Established impact cratering workers and newcomers to the field will appreciate this multifaceted, multidisciplinary collection of impact cratering studies.
Genesis of the mafic granophyre of the Vredefort impact structure (South Africa): Implications of new geochemical and Se and Re-Os isotope data
*corresponding author: [email protected]
-
Published:August 02, 2021
-
CiteCitation
Wolf Uwe Reimold*, Toni Schulz, Stephan König, Christian Koeberl, Natalia Hauser, Dschamilja Wannek, Ralf-Thomas Schmitt, 2021. "Genesis of the mafic granophyre of the Vredefort impact structure (South Africa): Implications of new geochemical and Se and Re-Os isotope data", Large Meteorite Impacts and Planetary Evolution VI, Wolf Uwe Reimold, Christian Koeberl
Download citation file:
- Share
ABSTRACT
This contribution is concerned with the debated origin of the impact melt rock in the central uplift of the world’s largest confirmed impact structure—Vredefort (South Africa). New major- and trace-element abundances, including those of selected highly siderophile elements (HSEs), Re-Os isotope data, as well as the first Se isotope and Se-Te elemental systematics are presented for the felsic and mafic varieties of Vredefort impact melt rock known as “Vredefort Granophyre.” In addition to the long-recognized “normal” (i.e., felsic, >66 wt% SiO2) granophyre variety, a more mafic (<66 wt% SiO2) impact melt variety from Vredefort has been discussed for several years. The hypothesis that the mafic granophyre was formed from felsic granophyre through admixture (assimilation) of a mafic country rock component that then was melted and assimilated into the superheated impact melt has been pursued here by analysis of the two granophyre varieties, of the Dominion Group lava (actually meta-lava), and of epidiorite mafic country rock types. Chemical compositions, including high-precision isotope dilution–derived concentrations of selected highly siderophile elements (Re, Os, Ir, Pt, Se, Te), and Re-Os and Se isotope data support this hypothesis. A first-order estimate, based on these data, suggests that some mafic granophyre may have resulted from a significant admixture (assimilation) of epidiorite to felsic granophyre. This is in accordance with the findings of an earlier investigation using conventional isotope (Sr-Nd-Pb) data. Moreover, these outcomes are in contrast to a two-stage emplacement model for Vredefort Granophyre, whereby a mafic phase of impact melt, derived by differentiation of a crater-filling impact melt sheet, would have been emplaced into earlier-deposited felsic granophyre. Instead, all chemical and isotopic evidence so far favors formation of mafic granophyre by local assimilation of mafic country rock—most likely epidiorite—by a single intrusive impact melt phase, which is represented by the regionally homogeneous felsic granophyre.
- Africa
- chemical composition
- felsic composition
- Free State South Africa
- Gauteng South Africa
- granophyre
- igneous rocks
- impact craters
- impact features
- Johannesburg South Africa
- mafic composition
- major elements
- melts
- metals
- platinum group
- Re/Os
- selenium
- South Africa
- Southern Africa
- spectra
- trace elements
- Vredefort Dome
- X-ray fluorescence spectra