250 Million Years of Earth History in Central Italy: Celebrating 25 Years of the Geological Observatory of Coldigioco
Central Italy has been a cradle of geology for centuries. For more than 100 years, studies at the Umbria and Marche Apennines have led to new ideas and a better understanding of the past, such as the Cretaceous-Paleogene (K-Pg) boundary event, or the events across the Eocene-Oligocene transition from a greenhouse to an icehouse world. The Umbria-Marche Apennines are entirely made of marine sedimentary rocks, representing a continuous record of the geotectonic evolution of an epeiric sea from the Early Triassic to the Pleistocene. The book includes reviews and original research works accomplished with the support of the Geological Observatory of Coldigioco, an independent research and educational center, which was founded in an abandoned medieval hamlet near Apiro in 1992.
Popigai impact ejecta layer and extraterrestrial spinels recovered in a new Italian location—The Monte Vaccaro section (Marche Apennines, Italy)
-
Published:September 11, 2019
-
CiteCitation
Samuele Boschi*,†, Birger Schmitz†, Fredrik Terfelt†, Linus Ros†, Mikael Elfman†, Per Kristiansson†, Camilla Sulas†, Simonetta Monechi†, Alessandro Montanari†, 2019. "Popigai impact ejecta layer and extraterrestrial spinels recovered in a new Italian location—The Monte Vaccaro section (Marche Apennines, Italy)", 250 Million Years of Earth History in Central Italy: Celebrating 25 Years of the Geological Observatory of Coldigioco, Christian Koeberl, David M. Bice
Download citation file:
- Share
ABSTRACT
The Popigai (100 km in diameter) and the Chesapeake Bay (40–85 km diameter) impact structures formed within ~10–20 k.y. in the late Eocene during a 2 m.y. period with enhanced flux of 3He-rich interplanetary dust to Earth. Ejecta from the Siberian Popigai impact structure have been found in late Eocene marine sediments at numerous deep-sea drilling sites around the globe and also in a few marine sections outcropped on land, like the Massignano section near Ancona in Italy. In the Massignano section, the Popigai layer is associated with an iridium anomaly, shocked quartz, and abundant clinopyroxene-bearing (cpx) spherules, altered to smectite and flattened to “pancake spherules.” The ejecta are also associated with a significant enrichment of H-chondritic chromite grains (>63 μm), likely representing unmelted fragments of the impactor. The Massignano section also contains abundant terrestrial chrome-spinel grains, making reconstructions of the micrometeorite flux very difficult. We therefore searched for an alternative section that would be more useful for these types of studies. Here, we report the discovery of such a section, and also the first discovery of the Popigai ejecta in another locality in Italy, the Monte Vaccaro section, 90 km west of Ancona. The Monte Vaccaro section biostratigraphy was established based on calcareous nannoplankton, which allowed the identification of a sequence of distinct bioevents showing a good correlation with the Massignano section. In both the Monte Vaccaro and Massignano sections, the Popigai ejecta layer occurs in calcareous nannofossil zone CNE 19. The ejecta layer in the Monte Vaccaro section contains shocked quartz, abundant pancake spherules, and an iridium anomaly of 700 ppt, which is three times higher than the peak Ir measured in the ejecta layer at Massignano. In a 105-kg-size sample from just above the ejecta layer at Monte Vaccaro, we also found an enrichment of H-chondritic chromite grains. Because of its condensed nature and low content of terrestrial spinel grains, the Monte Vaccaro section holds great potential for reconstructions of the micrometeorite flux to Earth during the late Eocene using spinels.
- Ancona Italy
- anomalies
- Apennines
- Asia
- biostratigraphy
- Cenozoic
- chemical composition
- chondrites
- chrome spinel
- Commonwealth of Independent States
- ejecta
- Eocene
- Europe
- event stratigraphy
- H chondrites
- iridium
- Italy
- Marches Italy
- Massignano Italy
- metals
- metamorphism
- meteorites
- micrometeorites
- mineral composition
- nannoplankton
- ordinary chondrites
- oxides
- Paleogene
- plankton
- platinum group
- Popigay Structure
- reconstruction
- Russian Federation
- shock metamorphism
- Southern Europe
- spherules
- spinel
- stony meteorites
- tektites
- Tertiary
- Monte Vaccaro