Skip to Main Content
Skip Nav Destination

Defining temporal and spatial distribution of shortening is critical to reconstruct past plate motions and to examine mechanical coupling processes at convergent plate boundaries. Understanding the collisional evolution of the British Mountains and Beaufort-MacKenzie basin in the northern Alaska–Yukon region is key for the geodynamics of the Arctic region. With the aim to resolve the exhumation history of this region, we present the first zircon fission-track and (U-Th)/He analyses on apatite and zircon from the Neruokpuk Formation (ca. 720–485 Ma), which forms the orogenic basement of the British Mountains. Zircon fission-track ages show partial resetting, indicating the Proterozoic basement did not reside at temperatures above 240 °C. Thermal modeling of zircon and apatite (U-Th)/He data indicates that our samples reached this maximum temperature at ca. 100 Ma. The onset of the Brookian collision is indicated by exhumation from ca. 80 Ma. A total exhumation of 7–8.5 km since the Late Cretaceous is inferred. Apatite (U-Th)/He ages of ca. 50 Ma show that exhumation was less than 2.5 km since the early Eocene. We infer from a comparison with the temporal evolution of exhumation from adjacent orogenic domains that shortening progressively shifted northward from the British Mountains to the Barn Mountains and offshore in the Beaufort Sea during the Paleocene. Along-strike variations in the architecture of the rifted margin of Arctic Alaska is suggested to have exerted a strong control on the structural styles and observed exhumation patterns.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal