Unfolding the Geology of the West
Prepared in conjunction with the 2016 GSA Annual Meeting in Denver, Colorado, this volume contains sixteen guides to field trips in this rich geologic region. The four “Great Surveys” of the late 1800s ventured west to explore and document the region’s unknown natural resources and collect valuable geologic information. Many of the field guides in this volume, aptly titled Unfolding the Geology of the West, will cover the same hallowed ground as the early geologic expeditions. Organized into four sections, this volume spans some of the major subdisciplines of geology: (1) stratigraphy, sedimentology, and paleontology; (2) structure and metamorphism; (3) Quaternary landscape evolution; and (4) engineering and environmental geology.
13: Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico
-
Published:January 01, 2016
-
CiteCitation
C.A. Ruleman, M.N. Machette, R.A. Thompson, D.P. Miggins, B.M. Goehring, J.B. Paces, 2016. "Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico", Unfolding the Geology of the West, Stephen M. Keller, Matthew L. Morgan
Download citation file:
- Share
Abstract
The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio Conchos watershed and much of the Chihuahuan Desert, inducing broad regional landscape incision and exhumation.