Geological Monitoring

Geologic Monitoring is a practical, nontechnical guide for land managers, educators, and the public that synthesizes representative methods for monitoring short-term and long-term change in geologic features and landscapes. A prestigious group of subject-matter experts has carefully selected methods for monitoring sand dunes, caves and karst, rivers, geothermal features, glaciers, nearshore marine features, beaches and marshes, paleontological resources, permafrost, seismic activity, slope movements, and volcanic features and processes. Each chapter has an overview of the resource; summarizes features that could be monitored; describes methods for monitoring each feature ranging from low-cost, low-technology methods (that could be used for school groups) to higher cost, detailed monitoring methods requiring a high level of expertise; and presents one or more targeted case studies.
Permafrost conditions and processes
-
Published:January 01, 2009
Abstract
Permafrost is ground (soil or rock and included ice and organic material) that remains at or below 0 °C for at least two consecutive years. Permafrost terrain consists of an “active layer” at the surface that freezes and thaws each year, underlain by perennially frozen ground. The top of permafrost is at the base of this active layer. The base of permafrost occurs where the ground temperature rises above 0 °C at depth (Osterkamp and Burn, 2002). In some cases, temperature measurements over a period of two years are required to determine the presence or absence of permafrost. Temperature measurements are also required to determine the status of the permafrost. Permafrost that is warm and/or warming is in danger of thawing.
Approximately 25% of the exposed land area of Earth and ~80% of Alaska are underlain by permafrost. Mountain permafrost occurs at high elevations in western North America and on Mount Washington in New Hampshire. Permafrost has also been found near the summit of Mauna Kea in Hawaii.
Permafrost is a product of cold climates. The first permafrost on earth must have existed prior to or formed coincidentally with the first glaciation, ~2.3 billion years ago. Permafrost occurrences, distribution, and thicknesses must have increased during periods of cold climates and decreased during warm intervals. Permafrost may have disappeared in the Arctic ~50 million years ago. The current permafrost in Alaska appears to have been initiated during the climatic cooling that began ~2.5 million years ago. During the past
- active layer
- aerial photography
- Alaska
- classification
- climate
- climate change
- degradation
- ecosystems
- geomorphology
- global change
- ground ice
- ground-surface temperature
- hydrology
- ice
- landforms
- monitoring
- permafrost
- remote sensing
- settling
- snow
- surveys
- taliks
- terrains
- thawing
- thermokarst
- topography
- United States
- vegetation
- temperature profiles