Skip to Main Content
Skip Nav Destination

We present the results of numerical mantle convection models demonstrating that dynamical effects induced by variable mantle viscosity, depth-dependent thermal expansivity, radiative thermal conductivity at the base of the mantle, the spinel to perovskite phase change and the perovskite to post-perovskite phase transition in the deep mantle can result in multiscale mantle plumes: stable lower-mantle superplumes are followed by groups of small upper-mantle plumes. Both radiative thermal conductivity at the base of the lower mantle and a strongly decreasing thermal expansivity of perovskite in the lower mantle can help induce partially layered convection with intense shear heating under the transition zone, which creates a low-viscosity zone and allows for the production of secondary mantle plumes emanating from this zone. Large-scale upwellings in the lower mantle, which are induced mainly by both the style of lower-mantle viscosity stratification and decrease of thermal expansivity, control position of central upper-mantle plumes of each group as well as the upper-mantle plume-plume interactions.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal