Skip to Main Content
Skip Nav Destination

We have examined the deformation associated with a right-releasing stepover along the dextral Walker Lane belt where it traverses Wild Horse Mesa in eastern California. We use a micropolar inversion of both seismic focal mechanism and fault-slickenline data and compare the results to the micropolar deformation parameters inferred from paleomagnetically determined block rotations and GPS velocities. The focal mechanisms, fault-slickenlines, and GPS velocities all show horizontal shear with a consistent ENE–WSW to E–W maximum extension-rate axis (d 1). A subset of data shows crustal thinning with a similarly oriented d 1. We interpret these results as a reflection of divergent strike-slip (i.e., transtensional) boundary conditions in a negative flower structure developed in the right-releasing stepover. The fault-slickenline data also show a crustal thickening solution that we attribute to the local accommodation of block rotations. Paleomagnetic data demonstrate clockwise-looking-down rotations of 12.0° ± 2.6° (68% confidence limits) in ca. 3 Ma volcanic rocks, relative to the same rocks outside the stepover. Assuming rotations took 2–3 m.y. gives average microspins (block rotation rates) of 4.0° ± 0.9°/m.y. to 6.0° ± 1.3°/m.y. GPS velocities define a current macrospin (half the continuum rotation rate) of 3.9° ± 0.6°/m.y. to 6.1° ± 1.5°/m.y. These spin components are consistent with expectations for transtension. Our calculations of relative vorticity W from the GPS and paleomagnetic data are generally consistent with values obtained from the inversion of the fault-slickenline data, but the uncertainties in the data do not permit a definitive test of these results.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal