Large Meteorite Impacts and Planetary Evolution VI
CONTAINS OPEN ACCESS

This volume represents the proceedings of the homonymous international conference on all aspects of impact cratering and planetary science, which was held in October 2019 in Brasília, Brazil. The volume contains a sizable suite of contributions dealing with regional impact records (Australia, Sweden), impact craters and impactites, early Archean impacts and geophysical characteristics of impact structures, shock metamorphic investigations, post-impact hydrothermalism, and structural geology and morphometry of impact structures—on Earth and Mars. Many contributions report results from state-of-the-art investigations, for example, several that are based on electron backscatter diffraction studies, and deal with new potential chronometers and shock barometers (e.g., apatite). Established impact cratering workers and newcomers to the field will appreciate this multifaceted, multidisciplinary collection of impact cratering studies.
Dynamics of collapse of an impact central uplift: Evidence from folds and faults in the collar of the Vredefort Dome, South Africa
-
Published:August 02, 2021
-
CiteCitation
Shalene Manzi*, Roger L. Gibson, Asinne Tshibubudze, 2021. "Dynamics of collapse of an impact central uplift: Evidence from folds and faults in the collar of the Vredefort Dome, South Africa", Large Meteorite Impacts and Planetary Evolution VI, Wolf Uwe Reimold, Christian Koeberl
Download citation file:
- Share
ABSTRACT
Structural analysis of overturned metasedimentary strata of the lower Witwatersrand Supergroup in the inner collar of the Vredefort Dome reveals the presence of tangential folds and faults associated with the 2.02 Ga impact. The folds are distinct from previously identified subradially oriented, vertical to plunging-inclined, gentle folds that are interpreted as the products of convergent flow (constriction) during the initial stages of central uplift formation. The tangential folds comprise disharmonic, open, asymmetric, horizontal to plunging-inclined anticline-syncline pairs with centripetally dipping axial planes and right-way-up intermediate limbs. They display centripetal-down vergence (anticline radially outward of the syncline) that is consistent with steep inward-directed shear of the overturned strata. We attribute this kinematic pattern to subvertical collapse of the Vredefort central uplift during the latter stages of crater modification. The folds are cut by pseudotachylite-bearing steep to vertical tangential faults that display center-down slip of <10 m up to ~150 m. Both the tangential folds and the faults suggest that the large-scale overturning of strata related to outward collapse of the Vredefort central uplift was accompanied by a component of inward-directed collapse via layer-parallel shearing and folding, followed by faulting. Subradially oriented faults with conjugate strike separations of 1–2 km in the NNE collar of the dome suggest penecontemporaneous tangential extension of the inner collar rocks. This evidence indicates that second-order structures in the metasedimentary collar of the Vredefort Dome preserve a complex, multistage record of evolving strain associated with both initial convergent and upward flow (constriction) related to central uplift rise and later divergent and downward flow (flattening) linked to its collapse, and that centripetally directed collapse features may be important components of the structural inventory of very large central uplifts.