The Mineral King pendant in the Sierra Nevada batholith (California, USA) contains at least four rhyolite units that record high-silica volcanism during magmatic lulls in the Sierran magmatic arc. U-Th-Pb, trace element (single crystal spot analyses via sensitive high-resolution ion microprobe–reverse geometry, SHRIMP-RG), and bulk oxygen isotope analyses of zircon from these units provide a record of the age and compositional properties of the magmas that is not available from whole-rock analysis because of intense hydrothermal alteration of the pendant. U-Pb spot ages reveal that the Mineral King rhyolites are from two periods, the Early Jurassic (197 Ma) and the Early Cretaceous (134–136 Ma). These two rhyolite packages have zircons with distinct compositional trends for trace elements and δ18O; the Early Jurassic rhyolite shows less evidence of crustal influences on the rhyolites and the Early Cretaceous rhyolite shows evidence of increasing crustal influences and crystal recycling. These rhyolites capture evidence of magmatism during two periods of low magmatic flux in the Sierran Arc; however, they still show that magmas were derived from interactions of maturing continental crust, increasing from the Early to Late Jurassic. This finding likely reflects the transition of the North America margin from one of docking island arcs in the Early Jurassic to one of a more mature continental arc in the Early Cretaceous. This also shows the utility in examining zircon spot ages combined with trace element and bulk isotopic composition to unlock the petrogenetic history of altered volcanic rocks.

You do not currently have access to this article.