Abstract
Groundwater flow modeling is an important tool for understanding and computing hydrology and water availability of an aquifer zone. However, an accurate representation of boundaries and their initial conditions are vital for simulation of the groundwater flow phenomena. In this study, efforts have been made to develop a GIS based methodology for estimating flux across boundaries of the study area using Darcy flow tool. The spatial maps of topography, bore log, transmissivity, hydraulic conductivity, porosity and groundwater levels for the study area were created in ArcGIS 9.3.1 using krigging method. A buffer zone of 1×1 km2 cell size was created on inner and outer side of the boundaries and Darcy flow model was used to estimate specified flux across boundaries. The groundwater behavior of the study area was simulated with specified flux boundary condition (Neumann boundary condition) and no flow boundary condition to assess importance and estimation accuracy of estimated flux. Darcy model output indicates that flux across the boundaries contributed about 36.20 mm in average annual change in groundwater table depth. With estimated specified flux, simulation accuracy of groundwater flow model (R2) increased to 0.97 from 0.90. The satisfactory level (R2=0.97) of simulation accuracy reveals that developed methodology can be used for estimating flux across boundaries in the absence of physical boundaries.