- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Arctic Ocean
-
Barents Sea (1)
-
-
Asia
-
Popigay Structure (5)
-
-
Atlantic Ocean
-
North Atlantic
-
Caribbean Sea
-
Venezuelan Basin (1)
-
-
Gulf of Mexico
-
Campeche Scarp (1)
-
-
Northwest Atlantic (2)
-
-
South Atlantic (1)
-
-
Canada
-
Eastern Canada
-
Ontario (1)
-
-
Nunavut
-
Haughton impact structure (1)
-
-
-
Chesapeake Bay impact structure (60)
-
Chicxulub Crater (4)
-
Commonwealth of Independent States
-
Russian Federation
-
Popigay Structure (5)
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
-
Europe
-
Baltic region
-
Estonia (1)
-
-
Southern Europe
-
Italy
-
Marches Italy
-
Ancona Italy
-
Massignano Italy (2)
-
-
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
Western Europe
-
France
-
Rochechouart Crater (1)
-
-
Scandinavia
-
Norway (1)
-
Sweden
-
Jamtland Sweden
-
Lockne Crater (3)
-
-
-
-
-
-
International Ocean Discovery Program (1)
-
James River (1)
-
United States
-
Alabama
-
Elmore County Alabama (1)
-
-
Atlantic Coastal Plain (2)
-
Chesapeake Bay (7)
-
Iowa
-
Manson impact structure (1)
-
-
Maryland
-
Dorchester County Maryland (1)
-
Talbot County Maryland (1)
-
-
New Jersey (2)
-
Tennessee
-
Jackson County Tennessee (1)
-
-
Virginia
-
Mathews County Virginia (1)
-
Northampton County Virginia (42)
-
-
-
-
commodities
-
glass materials (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (3)
-
organic carbon (2)
-
-
chemical ratios (1)
-
hydrogen
-
deuterium (1)
-
-
isotope ratios (6)
-
isotopes
-
stable isotopes
-
C-13/C-12 (3)
-
deuterium (1)
-
O-18/O-16 (3)
-
Os-188/Os-187 (1)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
-
-
-
oxygen
-
O-18/O-16 (3)
-
-
sulfur
-
S-34/S-32 (1)
-
-
-
fossils
-
bacteria (1)
-
borings (1)
-
ichnofossils (1)
-
Invertebrata
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
-
-
-
-
microfossils
-
problematic microfossils (1)
-
-
palynomorphs
-
Dinoflagellata (2)
-
miospores
-
pollen (1)
-
-
-
Plantae
-
algae
-
nannofossils (3)
-
-
-
problematic fossils
-
problematic microfossils (1)
-
-
-
geochronology methods
-
Ar/Ar (2)
-
paleomagnetism (3)
-
U/Pb (2)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene (4)
-
-
Tertiary
-
Neogene
-
Miocene
-
Calvert Formation (3)
-
middle Miocene
-
Choptank Formation (2)
-
-
Saint Marys Formation (3)
-
upper Miocene
-
Eastover Formation (3)
-
-
-
Pliocene
-
upper Pliocene
-
Chowan River Formation (1)
-
-
Yorktown Formation (3)
-
-
-
Paleogene
-
Eocene
-
upper Eocene (29)
-
-
Oligocene
-
lower Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
-
Paleocene-Eocene Thermal Maximum (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Potomac Group (1)
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Triassic-Jurassic boundary (1)
-
-
-
Triassic
-
Lower Triassic (1)
-
Upper Triassic
-
Triassic-Jurassic boundary (1)
-
-
-
-
Paleozoic
-
Permian
-
Upper Permian (2)
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic (3)
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (8)
-
pegmatite (1)
-
-
volcanic rocks
-
glasses (3)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (2)
-
impactites
-
impact breccia
-
suevite (9)
-
-
-
schists (1)
-
-
turbidite (1)
-
-
meteorites
-
meteorites
-
stony meteorites
-
achondrites (1)
-
chondrites
-
ordinary chondrites (1)
-
-
-
-
-
minerals
-
oxides
-
anatase (1)
-
-
silicates
-
framework silicates
-
silica minerals
-
cristobalite (1)
-
tridymite (1)
-
-
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (2)
-
-
-
-
sheet silicates
-
clay minerals (2)
-
-
-
sulfides (1)
-
-
Primary terms
-
absolute age (2)
-
Arctic Ocean
-
Barents Sea (1)
-
-
Asia
-
Popigay Structure (5)
-
-
asteroids (2)
-
Atlantic Ocean
-
North Atlantic
-
Caribbean Sea
-
Venezuelan Basin (1)
-
-
Gulf of Mexico
-
Campeche Scarp (1)
-
-
Northwest Atlantic (2)
-
-
South Atlantic (1)
-
-
bacteria (1)
-
Canada
-
Eastern Canada
-
Ontario (1)
-
-
Nunavut
-
Haughton impact structure (1)
-
-
-
carbon
-
C-13/C-12 (3)
-
organic carbon (2)
-
-
Cenozoic
-
Quaternary
-
Pleistocene (4)
-
-
Tertiary
-
Neogene
-
Miocene
-
Calvert Formation (3)
-
middle Miocene
-
Choptank Formation (2)
-
-
Saint Marys Formation (3)
-
upper Miocene
-
Eastover Formation (3)
-
-
-
Pliocene
-
upper Pliocene
-
Chowan River Formation (1)
-
-
Yorktown Formation (3)
-
-
-
Paleogene
-
Eocene
-
upper Eocene (29)
-
-
Oligocene
-
lower Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
-
Paleocene-Eocene Thermal Maximum (1)
-
-
-
-
climate change (1)
-
continental shelf (1)
-
continental slope (1)
-
crystal growth (1)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 95
-
DSDP Site 612 (3)
-
-
-
Leg 10
-
DSDP Site 94 (1)
-
-
Leg 15
-
DSDP Site 149 (1)
-
-
-
deformation (1)
-
diagenesis (1)
-
Europe
-
Baltic region
-
Estonia (1)
-
-
Southern Europe
-
Italy
-
Marches Italy
-
Ancona Italy
-
Massignano Italy (2)
-
-
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
Western Europe
-
France
-
Rochechouart Crater (1)
-
-
Scandinavia
-
Norway (1)
-
Sweden
-
Jamtland Sweden
-
Lockne Crater (3)
-
-
-
-
-
-
foliation (1)
-
geophysical methods (4)
-
ground water (4)
-
heat flow (3)
-
hydrogen
-
deuterium (1)
-
-
hydrology (1)
-
ichnofossils (1)
-
igneous rocks
-
plutonic rocks
-
granites (8)
-
pegmatite (1)
-
-
volcanic rocks
-
glasses (3)
-
-
-
inclusions
-
fluid inclusions (1)
-
-
interplanetary space (1)
-
Invertebrata
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
-
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (3)
-
deuterium (1)
-
O-18/O-16 (3)
-
Os-188/Os-187 (1)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Potomac Group (1)
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Triassic-Jurassic boundary (1)
-
-
-
Triassic
-
Lower Triassic (1)
-
Upper Triassic
-
Triassic-Jurassic boundary (1)
-
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
-
-
-
metamorphic rocks
-
amphibolites (2)
-
impactites
-
impact breccia
-
suevite (9)
-
-
-
schists (1)
-
-
metamorphism (8)
-
metasomatism (5)
-
meteorites
-
stony meteorites
-
achondrites (1)
-
chondrites
-
ordinary chondrites (1)
-
-
-
-
Ocean Drilling Program
-
Leg 150
-
ODP Site 903 (2)
-
ODP Site 904 (2)
-
-
Leg 174A
-
ODP Site 1073 (2)
-
-
Leg 177
-
ODP Site 1090 (1)
-
-
-
ocean floors (1)
-
oxygen
-
O-18/O-16 (3)
-
-
paleoclimatology (4)
-
paleoecology (1)
-
paleomagnetism (3)
-
paleontology (1)
-
Paleozoic
-
Permian
-
Upper Permian (2)
-
-
-
palynomorphs
-
Dinoflagellata (2)
-
miospores
-
pollen (1)
-
-
-
Plantae
-
algae
-
nannofossils (3)
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic (3)
-
-
-
problematic fossils
-
problematic microfossils (1)
-
-
sea-level changes (2)
-
sedimentary rocks
-
clastic rocks
-
argillite (1)
-
claystone (1)
-
sandstone (2)
-
siltstone (1)
-
-
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
-
-
sedimentation (4)
-
sediments
-
clastic sediments
-
diamicton (2)
-
-
marine sediments (2)
-
-
stratosphere (1)
-
sulfur
-
S-34/S-32 (1)
-
-
tectonics (1)
-
tektites (3)
-
United States
-
Alabama
-
Elmore County Alabama (1)
-
-
Atlantic Coastal Plain (2)
-
Chesapeake Bay (7)
-
Iowa
-
Manson impact structure (1)
-
-
Maryland
-
Dorchester County Maryland (1)
-
Talbot County Maryland (1)
-
-
New Jersey (2)
-
Tennessee
-
Jackson County Tennessee (1)
-
-
Virginia
-
Mathews County Virginia (1)
-
Northampton County Virginia (42)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
argillite (1)
-
claystone (1)
-
sandstone (2)
-
siltstone (1)
-
-
-
turbidite (1)
-
-
sedimentary structures
-
borings (1)
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
diamicton (2)
-
-
marine sediments (2)
-
-
turbidite (1)
-
Chesapeake Bay impact structure
Marine impacts: Sedimentologic fingerprint of event magnitude
Dendritic reidite from the Chesapeake Bay impact horizon, Ocean Drilling Program Site 1073 (offshore northeastern USA): A fingerprint of distal ejecta?
Positive Ir anomaly at 6.19 m, Massignano, Italy: Most likely not from the Chesapeake Bay impact
ABSTRACT Two late Eocene impact spherule layers are known: the North America microtektite layer (from the Chesapeake Bay crater) and the slightly older clinopyroxene (cpx) spherule layer (from Popigai crater). Positive Ir anomalies occur at 5.61 m and 6.19 m above the base of a late Eocene section at Massignano, Italy. The age difference between the two anomalies is ~65 ± 20 k.y. The older Ir anomaly at 5.61 m appears to be associated with the cpx spherule layer. Although no impact spherules or shocked-mineral grains have been found associated with the upper Ir anomaly at 6.19 m, it has been proposed that it may be from the Chesapeake Bay impact. Comparison with other distal ejecta layers suggests that microtektites, but not shocked-mineral grains, from the Chesapeake Bay crater could have been thrown as far as Massignano. However, their absence neither supports nor disproves the hypothesis that the Ir anomaly at 6.19 m is from the Chesapeake Bay impact. On the other hand, the North American microtektite layer is not associated with an Ir anomaly. Furthermore, the average age difference between the cpx spherule layer and the North American microtektite layer appears to be ~18 ± 11 k.y., which is nearly one quarter the age difference between the two Ir anomalies at Massignano. This indicates that the Ir anomaly at 6.19 m is too young to be from the Chesapeake Bay impact, and thus is most likely not from the Chesapeake Bay impact.
Chesapeake Bay Impact Structure—Development of “Brim” Sedimentation in a Multilayered Marine Target
ABSTRACT The late Eocene Chesapeake Bay impact structure was formed in a multilayered target of seawater underlain sequentially by a sediment layer and a rock layer in a continental-shelf environment. Impact effects in the “brim” (annular trough) surrounding and adjacent to the transient crater, between the transient crater rim and the outer margin, primarily were limited to the target-sediment layer. Analysis of published and new lithostratigraphic, biostratigraphic, sedimentologic, petrologic, and mineralogic studies of three core holes, and published studies of a fourth core hole, provided information for the interpretation of the impact processes, their interactions and relative timing, their resulting products, and sedimentation in the brim. Most studies of marine impact-crater materials have focused on those found in the central crater. There are relatively few large, complex marine craters, of which most display a wide brim around the central crater. However, most have been studied using minimal data sets. The large number of core holes and seismic profiles available for study of the Chesapeake Bay impact structure presents a special opportunity for research. The physical and chronologic records supplied by study of the sediment and rock cores of the Chesapeake Bay impact indicate that the effects of the initial, short-lived contact and compression and excavation stages of the impact event primarily were limited to the transient crater. Only secondary effects of these processes are evident in the brim. The preserved record of the brim was created primarily in the subsequent modification stage. In the brim, the records of early impact processes (e.g., outgoing tsunamis, overturned flap collapse) were modified or removed by later processes. Transported and rotated, large and small clasts of target sediments, and intervals of fluidized sands indicate that seismic shaking fractured and partially fluidized the Cretaceous and Paleogene target sediments, which led to their inward transport by collapse and lateral spreading toward the transient crater. The succeeding inward seawater-resurge flow quickly overtook and interacted with the lateral spreading, further facilitating sediment transport across the brim and into the transient crater. Variations in the cohesion and relative depth of the target sediments controlled their degree of disaggregation and redistribution during these events. Melt clasts and shocked and unshocked rock clasts in the resurge sediments indicate fallout from the ejecta curtain and plume. Basal parautochthonous remnant sections of target Cretaceous sediments in the brim thin toward the collapsed transient crater. Overlying seawater-resurge deposits consist primarily of diamictons that vary laterally in thickness, and vertically and laterally in maximum grain size. After cessation of resurge flow and re-establishment of pre-impact sea level, sandy sediment gravity flows moved from the margin to the center of the partially filled impact structure (shelf basin). The uppermost unit consists of stratified sediments deposited from suspension. Postimpact clayey silts cap the crater fill and record the return to shelf sedimentation at atypically large paleodepths within the shelf basin. An unresolved question involves a section of gravel and sand that overlies Neoproterozoic granite in the inner part of the brim in one core hole. This section may represent previously unrecognized, now parautochthonous Cretaceous sediments lying nonconformably above basement granite, or it may represent target sediments that were moved significant distances by lateral spreading above basement rocks or above a granite megaclast from the overturned flap. The Chesapeake Bay impact structure is perhaps the best documented example of the small group of multilayer, marine-target impacts formed in continental shelves or beneath epeiric seas. The restriction of most impact effects to the target-sediment layer in the area outside the transient cavity, herein called the brim, and the presence of seawater-resurge sediments are characteristic features of this group. Other examples include the Montagnais (offshore Nova Scotia, Canada) and Mjølnir (offshore Norway) impact structures.
Dynamical studies of the asteroid belt reveal it to be an inadequate source of terrestrial impactors of more than a few kilometers in diameter. A more promising source for large impactors is an unstable reservoir of comets orbiting between Jupiter and Neptune. Comets 100–300 km across leak from this reservoir into potentially hazardous orbits on relatively short time scales. With a mass typically 10 3 –10 4 times that of a Chicxulub-sized impactor, the fragmentation of a giant comet yields a highly enhanced impact hazard at all scales, with a prodigious dust influx into the stratosphere over the duration of its breakup, which could be anywhere from a few thousand to a few hundred thousand years. Repeated fireball storms of a few hours' duration, occurring while the comet is fragmenting, may destroy stratospheric ozone and enhance incident ultraviolet light. These storms, as much as large impacts, may be major contributors to biological trauma. Thus, the debris from such comets has the potential to create mass extinctions by way of prolonged stress. Large impact craters are expected to occur in episodes rather than at random, and this is seen in the record of well-dated impact craters of the past 500 m.y. There is a strong correlation between these bombardment episodes and mass extinctions of marine genera.
Dinocyst taphonomy, impact craters, cyst ghosts and the Paleocene–Eocene thermal maximum (PETM)
Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure
Water resurge into newly excavated impact craters causes both erosion and conspicuous graded deposits in those cases where the water is deep enough to overrun the elevated crater rim. We compare published information on resurge deposits from mainly the Lockne, Tvären, and Chesapeake Bay structures with new results from low-velocity impact experiments and numerical simulations. Notwithstanding the limitations of each of the analytical methods (observation, experiment, and simulation), we can visualize the resurge process for various initial impact-target configurations, for which one single method would have been insufficient. The focus is on the ways in which variations in impact angle and target water depth affect water-cavity collapse, the initiation and continuation of the resurge, its transformation into a central water plume, and subsequent antiresurge, as well as tsunami generation. We show that (1) the resurge at oblique impacts, as well as impacts into a target with a varied water depth, becomes strongly asymmetrical, which greatly influences the development of the central water plume and sediment deposition; (2) the resurge may cause a central peak–like debris cumulate at the location of the collapsing central water plume; (3) at relatively deep target waters, the resurge proper is eventually prevented from reaching the crater center by the force of the antiresurge; (4) the antiresurge is separated into an upper and a lower component; (5) the resurge from the deep-water side at an impact into water of varied depth may overcome the resurge from the shallow-water side and push it back out of the crater; and (6) contrary to rim-wave tsunamis, a collapse-wave tsunami requires deeper relative water depth than that of Lockne, the crater-forming impact event with the currently deepest known target water depth.
Mechanisms of late synimpact to early postimpact crater sedimentation in marine-target impact structures
This study is a first attempt to compile sedimentological features of synimpact to postimpact marine sedimentary successions from marine-target impact craters utilizing six well-studied examples (Chesapeake Bay, Gardnos, Kärdla, Lockne, Mjølnir, and Wetumpka). The sedimentary formations succeed autochthonous breccias and, in some cases, allochthonous suevites. These late synimpact and early postimpact depositional successions (on top of the suevites) appear to be in comparable stratigraphic developments and facies in marine-impact craters. Their composition reflects common mechanisms of sedimentation; they were developed from avalanches/scree, slides, and slumps through sequences of mass-flow–dominated deposition before ending with density currents and fine-grained sedimentation from fluidal flow and suspension. With detailed study, it may be possible to separate the late synimpact and early postimpact successions based on their clast composition relative to target stratigraphy. The process-related comparisons presented here are highly simplified, including characteristics of moat, central peak, and marginal basin sedimentation of both simple and complex craters.
Two cores at the outer margin of the Chesapeake Bay impact structure show significant structural and depositional variations that illuminate its history. Detailed stratigraphy of the Watkins School core reveals that this site is outside the disruption boundary of the crater with respect to its lower part (nonmarine Cretaceous Potomac Formation), but just inside the boundary with respect to its upper part (Exmore Formation and a succession of upper Eocene to Pleistocene postimpact deposits). The site of the U.S. Geological Survey–National Aeronautics and Space Administration Langley core, 6.4 km to the east, lies wholly within the annular trough of the crater. The Potomac Formation in the Watkins School core is not noticeably impact disrupted. The lower part of crater unit A in the Langley core represents stratigraphically lower, but similarly undeformed material. The Exmore Formation is only 7.8 m thick in the Watkins School core, but it is over 200 m thick in the Langley core, where it contains blocks up to 24 m in intersected diameter. The upper part of the Exmore Formation in the two cores is a polymict diamicton with a stratified zone at the top. The postimpact sedimentary units in the two cores have similar late Eocene and late Miocene depositional histories and contrasting Oligocene, early Miocene, and middle Miocene histories. A paleochannel of the James River removed Pliocene deposits at the Watkins School site, to be filled later with thick Pleistocene deposits. At the Langley site, a thick Pliocene and thinner Pleistocene record is preserved.
Fifteen impactites from various intervals within the Eyreville cores of the Chesapeake Bay impact structure were sampled to measure siderophile element concentrations. The sampled intervals include basement-derived rocks with veins, polymict impact breccias and associated rocks, and crater-fill sediments. The platinum group element (PGE) concentrations obtained are generally low (e.g., iridium concentrations less than 0.1 ng/g) and are fractionated relative to chondrites. There is no clear distinction in concentration between the different impactite units. So far in the Chesapeake Bay material, only the impact melt rocks from the 823-m-deep Cape Charles test hole, drilled over the central uplift of the structure, have generated a bulk chondritic signature of 0.01–0.1 wt% meteoritic contribution based on a mixing model of 187 Os/ 188 Os isotopic ratios and Os concentrations. However, none of the samples studied shows PGE abundances that enable identification of the type of projectile responsible for the formation of the structure. Hence, it is at present not possible to link the Chesapeake Bay impact to the proposed ordinary chondrite falls by projectiles recorded for other late Eocene craters, namely the 100-km-diameter Popigai impact structure in Siberia and 7.5-km-diameter Wanapitei structure in Canada. The absence of a clear projectile signature hinders further discussions on the existence and the nature of the late Eocene shower event (asteroid versus comet).
Late Eocene impact craters and impactoclastic layers—An overview
Multiple bolide impact events, possibly related to a comet or asteroid shower over a duration of ~2–3 m.y., may have played an important role in the deterioration of the global climate at the end of the Eocene. Upper Eocene marine sediments around the world contain evidence for at least two closely spaced impactoclastic layers, i.e., layers containing impact debris such as tektites and microtektites, shocked minerals, and rock fragments. The upper layer correlates with the North American tektite strewn field (mostly on the eastern side of North America), and the 85-km-diameter Chesapeake Bay crater (USA) has been suggested as its source crater, whereas the lower, microkrystite layer (with clinopyroxene-bearing spherules) was most likely derived from the 100-km-diameter Popigai impact crater (Russia). In summary, at least five impact structures with late Eocene ages are known. Disturbances in the climate at that time are documented, and connection with the impact events is likely. This contribution provides a short review of late Eocene impact craters and ejecta layers.
We evaluated the age of two Upper Eocene impact ejecta layers (North American microtektites linked to the Chesapeake Bay impact structure and clinopyroxene [cpx] spherules from the Popigai crater) and the global effects of the associated impact events. The reported occurrence of cpx spherules from the Popigai impact structure at South Atlantic ODP Site 1090 within the middle of magnetochron C16n.1n yields a magnetochronologic age of 35.4 Ma. We generated high-resolution stable isotope records at Sites 1090, 612 (New Jersey slope), and Caribbean core RC9-58 that show: (1) a 0.5‰ δ 13 C decrease in bulk-carbonate at Site 1090 coincident with the Popigai cpx spherule layer, and (2) a 0.4‰–0.5‰ decrease in deep-water benthic foraminiferal δ 13 C values across the Popigai impact ejecta layer at Site 612 and core RC9-58. We conclude that the δ 13 C excursion associated with Popigai was a global event throughout the marine realm that can be correlated to magnetochron C16n.1n. The amplitude of this excursion (~0.5‰) is within the limits of natural variability, suggesting it was caused by a decrease in carbon export productivity, potentially triggered by the impact event(s). North American microtektites associated with the Chesapeake Bay impact occur stratigraphically above the Popigai cpx spherules at Site 612 and core RC9-58. We found no definite evidence of a δ 13 C anomaly associated with the North American microtektite layer, though further studies are warranted. High-resolution bulk-carbonate and benthic foraminiferal δ 18 O records show no global temperature change associated with the cpx spherule or North American microtektite layers.
The Eocene-Oligocene transition marks the passage from “greenhouse” conditions to an “icehouse state” with progressive global cooling starting in the early middle Eocene. The late Eocene is also characterized by a high concentration of extraterrestrial impacts, the effects of which, on living organisms and climatic changes, are still not understood. We carried out a high-resolution investigation on planktonic foraminiferal assemblages in an 8-m-thick segment of the Massignano global stratotype section and point for the Eocene-Oligocene boundary with the aim of assessing the effects that the impacts may have had on the environment and this group of organisms. The studied interval is punctuated by three late Eocene iridium-rich layers, several cosmic signatures, and enhanced levels of 3 He. The two lower closely spaced iridium anomalies are possibly linked to the Popigai and Chesapeake Bay impact events, respectively, whereas no particular impact event can be assigned to the third anomaly, even if it might be correlated with some large craters. Interpretation of data suggests that all the impacts had no abrupt, dramatic effects on planktonic foraminifera. However, acting as forcing factors, they induced some environmental perturbations and may have contributed to remarkable climate changes superimposed on the general late Eocene cooling trend. The Popigai and Chesapeake Bay impact events triggered significant changes in the water mass structure, in terms of stratification and trophic resources, associated with some climatic excursions that took place within chron C16n.1n and chron C15r and at the transition between planktonic foraminiferal zones P15 and P16. The short-term warming pulse recognized after the Popigai impact might have been due to greenhouse effects produced by injection of CO 2 into the atmosphere and/or the release of methane hydrate after the impact itself. The dynamic between hydrological and climate changes across the impactoclastic layers as observed at Massignano displays different features at each impact event, probably due to the context in which each occurred in terms of impactor size, location, and target rocks. The relatively long duration of the enhanced cooling following the Chesapeake Bay impact suggests that this event induced a progressive cooling and triggered a feedback mechanism that sustained the initial impact-induced changes. Similar patterns of climatic excursions reported worldwide across the equivalent impact-ejecta horizons indicate that the impact-induced climate changes recorded at Massignano appear to be global in extent.
The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its three-layer target structure, its large size (~85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay impact structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003–2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September–December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April–May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast–dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies.
The International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766–1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551–1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397–1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371–1096 m) includes gneissic biotite granite, fine- and medium-to-coarse–grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater.
The Eyreville A and B cores, recovered from the “moat” of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ~867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ~867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ~855–618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940–~760 m) allows recognition of local similarities and differences in the breccias.
A 443.9-m-thick, virtually undisturbed section of postimpact deposits in the Chesapeake Bay impact structure was recovered in the Eyreville A and C cores, Northampton County, Virginia, within the “moat” of the structure's central crater. Recovered sediments are mainly fine-grained marine siliciclastics, with the exception of Pleistocene sand, clay, and gravel. The lowest postimpact unit is the upper Eocene Chickahominy Formation (443.9–350.1 m). At 93.8 m, this is the maximum thickness yet recovered for deposits that represent the return to “normal marine” sedimentation. The Drummonds Corner beds (informal) and the Old Church Formation are thin Oligocene units present between 350.1 and 344.7 m. Above the Oligocene, there is a more typical Virginia coastal plain succession. The Calvert Formation (344.7–225.4 m) includes a thin lower Miocene part overlain by a much thicker middle Mio-cene part. From 225.4 to 206.0 m, sediments of the middle Miocene Choptank Formation, rarely reported in the Virginia coastal plain, are present. The thick upper Miocene St. Marys and Eastover Formations (206.0–57.8 m) appear to represent a more complete succession than in the type localities. Correlation with the nearby Kiptopeke core indicates that two Pliocene units are present: Yorktown (57.8–32.2 m) and Chowan River Formations (32.2–18.3 m). Sediments at the top of the section represent an upper Pleistocene channel-fill and are assigned to the Butlers Bluff and Occohannock Members of the Nassawadox Formation (18.3–0.6 m).
During 2005–2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs.
Rock-magnetic properties of the ICDP-USGS Eyreville core, Chesapeake Bay impact structure, Virginia, USA
Chesapeake is a 35-Ma-old shallow-marine, complex impact structure with a diameter of ~85 km. The structure is completely buried beneath several hundreds of meters of postimpact sediments. Therefore, subsurface information can be obtained only from geophysical surveys and drill holes. Recently, deep drilling into the inner crater zone, at Eyreville near Cape Charles, was carried out in order to provide constraints on geophysical modeling and cratering processes in a multilayered marine target. We analyzed samples of the Eyreville core including postimpact, impact- produced, and basement-derived units in order to clarify the magneto-mineralogy, to provide physical parameters for better understanding the influence of the impact on the petrophysical and rock-magnetic properties, and to provide rock-magnetic data for magnetic modeling. Results show a complex behavior of physical properties of the lithologies in the Eyreville core due to different lithologies having been affected by shock-induced changes. Our data suggest that pyrrhotite and magnetite carry the magnetic properties in most of the core samples, whereas hematite is present in oxidized clays from the uppermost impact-generated unit (Exmore beds) and related sediment megablocks. The granitic megablock appears to be undeformed based on lack of brittle deformation in magnetite and petrophysically appears as a single block. In contrast, the impactite sequence below the megablock shows brittle deformation and magnetic fabric randomization, and the pyrrhotite in the associated schist fragments is strongly fractured. Thus, the Chesapeake Bay deep core provides an extraordinary opportunity to study the effect of impact on magnetite and pyrrhotite, the two main magnetic minerals creating crustal magnetic anomalies.