Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
China
-
Shandong China (1)
-
-
-
Indian Peninsula
-
India
-
Andhra Pradesh India (1)
-
-
-
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
England
-
Cornwall England (1)
-
-
-
-
-
-
Oceania
-
Melanesia
-
New Caledonia (1)
-
-
-
United States
-
Arizona (1)
-
Powder River basin (1)
-
Utah (1)
-
Wyoming
-
Sheridan County Wyoming (1)
-
-
-
-
commodities
-
energy sources (1)
-
heavy mineral deposits (1)
-
industrial minerals (1)
-
metal ores
-
chromite ores (1)
-
cobalt ores (1)
-
copper ores (4)
-
gold ores (1)
-
iridium ores (1)
-
mercury ores (1)
-
molybdenum ores (2)
-
nickel ores (1)
-
osmium ores (1)
-
platinum ores (1)
-
polymetallic ores (1)
-
rare earth deposits (1)
-
silver ores (1)
-
titanium ores (1)
-
uranium ores (1)
-
vanadium ores (1)
-
zinc ores (1)
-
-
mineral exploration (1)
-
mineral resources (1)
-
new energy sources (1)
-
petroleum
-
natural gas
-
coalbed methane (1)
-
-
-
-
elements, isotopes
-
chemical elements (1)
-
metals
-
actinides
-
uranium (1)
-
-
alkali metals
-
lithium (1)
-
-
antimony (1)
-
arsenic (2)
-
bismuth (1)
-
cobalt (1)
-
copper (1)
-
lead (1)
-
mercury (2)
-
molybdenum (1)
-
nickel (1)
-
niobium (1)
-
platinum group
-
iridium (1)
-
iridium ores (1)
-
osmium (1)
-
osmium ores (1)
-
palladium (1)
-
platinum (1)
-
platinum ores (1)
-
rhodium (1)
-
ruthenium (1)
-
-
precious metals (1)
-
rare earths (1)
-
rhenium (1)
-
silver (1)
-
tantalum (1)
-
vanadium (1)
-
-
oxygen (1)
-
selenium (1)
-
tellurium (1)
-
-
geologic age
-
Cenozoic
-
Tertiary (1)
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
chromitite (1)
-
-
-
-
ophiolite (1)
-
-
metamorphic rocks
-
metamorphic rocks (1)
-
ophiolite (1)
-
-
minerals
-
arsenates
-
haidingerite (1)
-
pharmacolite (1)
-
scorodite (1)
-
-
carbonates (1)
-
oxides
-
rutile (1)
-
-
phosphates (1)
-
sulfates
-
ettringite (1)
-
gypsum (1)
-
-
sulfides
-
cinnabar (1)
-
zinc sulfides (1)
-
-
-
Primary terms
-
Asia
-
Far East
-
China
-
Shandong China (1)
-
-
-
Indian Peninsula
-
India
-
Andhra Pradesh India (1)
-
-
-
-
atmosphere (1)
-
Cenozoic
-
Tertiary (1)
-
-
chemical analysis (1)
-
crust (1)
-
data processing (1)
-
economic geology (1)
-
energy sources (1)
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
England
-
Cornwall England (1)
-
-
-
-
-
-
geochemistry (1)
-
geophysical methods (1)
-
ground water (2)
-
heat flow (1)
-
heavy mineral deposits (1)
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
chromitite (1)
-
-
-
-
industrial minerals (1)
-
magmas (1)
-
metal ores
-
chromite ores (1)
-
cobalt ores (1)
-
copper ores (4)
-
gold ores (1)
-
iridium ores (1)
-
mercury ores (1)
-
molybdenum ores (2)
-
nickel ores (1)
-
osmium ores (1)
-
platinum ores (1)
-
polymetallic ores (1)
-
rare earth deposits (1)
-
silver ores (1)
-
titanium ores (1)
-
uranium ores (1)
-
vanadium ores (1)
-
zinc ores (1)
-
-
metals
-
actinides
-
uranium (1)
-
-
alkali metals
-
lithium (1)
-
-
antimony (1)
-
arsenic (2)
-
bismuth (1)
-
cobalt (1)
-
copper (1)
-
lead (1)
-
mercury (2)
-
molybdenum (1)
-
nickel (1)
-
niobium (1)
-
platinum group
-
iridium (1)
-
iridium ores (1)
-
osmium (1)
-
osmium ores (1)
-
palladium (1)
-
platinum (1)
-
platinum ores (1)
-
rhodium (1)
-
ruthenium (1)
-
-
precious metals (1)
-
rare earths (1)
-
rhenium (1)
-
silver (1)
-
tantalum (1)
-
vanadium (1)
-
-
metamorphic rocks (1)
-
mineral exploration (1)
-
mineral resources (1)
-
mining geology (1)
-
ocean basins (1)
-
Oceania
-
Melanesia
-
New Caledonia (1)
-
-
-
oxygen (1)
-
petroleum
-
natural gas
-
coalbed methane (1)
-
-
-
pollution (5)
-
roads (2)
-
sedimentary rocks
-
chemically precipitated rocks (1)
-
clastic rocks
-
black shale (2)
-
-
coal (1)
-
-
selenium (1)
-
soil mechanics (1)
-
soils (2)
-
springs (1)
-
tellurium (1)
-
thermal waters (1)
-
United States
-
Arizona (1)
-
Powder River basin (1)
-
Utah (1)
-
Wyoming
-
Sheridan County Wyoming (1)
-
-
-
waste disposal (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
chemically precipitated rocks (1)
-
clastic rocks
-
black shale (2)
-
-
coal (1)
-
-
-
soils
-
soils (2)
-
GeoRef Categories
Era and Period
Book Series
Date
Availability
byproducts
Study of Road Performance and Curing Mechanism of Coal Gangue by Curing Agent Open Access
Carbonate-hosted U-deposit in the Tummalapalle Area, Andhra Pradesh, India: A Potential Source to Generate Critical Minerals of REs, V, Mo, Co, Ni, Cu, Ag and Phosphate as Value-added Byproducts Available to Purchase
Action Versus Reaction: How Geometallurgy Can Improve Mine Waste Management Across the Life-Of-Mine Free
THE IMPORTANCE OF GEOLOGY IN ASSESSING BY- AND COPRODUCT METAL SUPPLY POTENTIAL; A CASE STUDY OF ANTIMONY, BISMUTH, SELENIUM, AND TELLURIUM WITHIN THE COPPER PRODUCTION STREAM Available to Purchase
The leaching characteristics of common toxic elements in phosphogypsum Available to Purchase
By-Products of Porphyry Copper and Molybdenum Deposits Available to Purchase
Abstract Porphyry Cu and porphyry Mo deposits are large to giant deposits ranging up to >20 and 1.6 Gt of ore, respectively, that supply about 60 and 95% of the world’s copper and molybdenum, as well as significant amounts of gold and silver. These deposits form from hydrothermal systems that affect 10s to >100 km 3 of the upper crust and result in enormous mass redistribution and potential concentration of many elements. Several critical elements, including Re, Se, and Te, which lack primary ores, are concentrated locally in some porphyry Cu deposits, and despite their low average concentrations in Cu-Mo-Au ores (100s of ppb to a few ppm), about 80% of the Re and nearly all of the Se and Te produced by mining is from porphyry Cu deposits. Rhenium is concentrated in molybdenite, whose Re content varies from about 100 to 3,000 ppm in porphyry Cu deposits, ≤150 ppm in arc-related porphyry Mo deposits, and ≤35 ppm in alkali-feldspar rhyolite-granite (Climax-type) porphyry Mo deposits. Because of the relatively small size of porphyry Mo deposits compared to porphyry Cu deposits and the generally low Re contents of molybdenites in them, rhenium is not recovered from porphyry Mo deposits. The potential causes of the variation in Re content of molybdenites in porphyry deposits are numerous and complex, and this variation is likely the result of a combination of processes that may change between and within deposits. These processes range from variations in source and composition of parental magmas to physiochemical changes in the shallow hydrothermal environment. Because of the immense size of known and potential porphyry Cu resources, especially continental margin arc deposits, these deposits likely will provide most of the global supply of Re, Te, and Se for the foreseeable future. Although Pd and lesser Pt are recovered from some deposits, platinum group metals are not strongly enriched in porphyry Cu deposits and PGM resources contained in known porphyry deposits are small. Because there are much larger known PGM resources in deposits in which PGMs are the primary commodities, it is unlikely that porphyry deposits will become a major source of PGMs. Other critical commodities, such as In and Nb, may eventually be recovered from porphyry Cu and Mo deposits, but available data do not clearly define significant resources of these commodities in porphyry deposits. Although alkali-feldspar rhyolite-granite porphyry Mo deposits and their cogenetic intrusions are locally enriched in many rare metals (such as Li, Nb, Rb, Sn, Ta, and REEs) and minor amounts of REEs and Sn have been recovered from the Climax mine, these elements are generally found in uneconomic concentrations. As global demand increases for critical elements that are essential for the modern world, porphyry deposits will play an increasingly important role as suppliers of some of these metals. The affinity of these metals and the larger size and greater number of porphyry Cu deposits suggest that they will remain more significant than porphyry Mo deposits in supplying many of these critical metals.