- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Limpopo Basin (1)
-
-
Alexander Island (1)
-
Antarctica (2)
-
Arctic region
-
Svalbard (1)
-
-
Asia
-
Siberia (2)
-
-
Atlantic Ocean
-
North Atlantic
-
Blake Plateau
-
Blake Nose (1)
-
-
-
South Atlantic
-
Walvis Ridge (1)
-
-
-
Australasia
-
Australia (1)
-
-
Canada
-
Arctic Archipelago (1)
-
Eastern Canada
-
Baffin Island (1)
-
Maritime Provinces
-
Nova Scotia (1)
-
-
-
Nunavut
-
Baffin Island (1)
-
-
-
Chicxulub Crater (1)
-
Commonwealth of Independent States
-
Russian Federation
-
Sverdlovsk Russian Federation
-
Yekaterinburg Russian Federation (1)
-
-
-
Ukraine
-
Boltyshka Depression (2)
-
Ukrainian Shield (1)
-
-
Urals (1)
-
-
Eurasia (1)
-
Europe
-
Russian Plain (1)
-
Ukraine
-
Boltyshka Depression (2)
-
Ukrainian Shield (1)
-
-
Western Europe
-
France
-
Oise France (1)
-
-
-
-
Indian Ocean
-
Andaman Sea (1)
-
-
International Ocean Discovery Program
-
Expedition 353
-
IODP Site U1448 (1)
-
-
-
North America
-
Gulf Coastal Plain (1)
-
-
Northern Hemisphere (1)
-
Pacific Ocean
-
West Pacific
-
Sunda Shelf (1)
-
-
-
polar regions (2)
-
Russian Platform
-
Ukrainian Shield (1)
-
-
South America
-
Brazil
-
Rio Grande do Norte Brazil (1)
-
-
-
United States
-
Alabama
-
Choctaw County Alabama (1)
-
-
Arkansas (1)
-
California
-
Southern California (1)
-
-
Illinois Basin (1)
-
Indiana
-
Clay County Indiana (1)
-
-
Mississippi
-
Choctaw County Mississippi (1)
-
-
New Mexico
-
Socorro County New Mexico (1)
-
-
Tennessee (1)
-
Texas
-
Bastrop County Texas (1)
-
Limestone County Texas (1)
-
Robertson County Texas (1)
-
Rusk County Texas (1)
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (5)
-
C-14 (1)
-
organic carbon (1)
-
-
isotope ratios (5)
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
-
stable isotopes
-
C-13/C-12 (5)
-
-
-
sulfur (1)
-
-
fossils
-
bacteria (1)
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Amniota (1)
-
Amphibia (1)
-
Mammalia
-
Theria
-
Eutheria
-
Rodentia (1)
-
-
-
-
Reptilia (1)
-
-
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Insecta
-
Pterygota
-
Neoptera
-
Endopterygota
-
Hymenoptera (1)
-
-
-
-
-
-
-
Brachiopoda (2)
-
Bryozoa (1)
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca (1)
-
Protista
-
Foraminifera
-
Fusulinina
-
Fusulinidae (1)
-
-
-
-
Vermes
-
Annelida (1)
-
-
-
microfossils
-
Fusulinina
-
Fusulinidae (1)
-
-
-
palynomorphs
-
miospores
-
pollen (2)
-
-
-
Plantae
-
Pteridophyta
-
Lycopsida
-
Lepidodendron (1)
-
Stigmaria (1)
-
-
Sphenopsida
-
Equisetales
-
Calamites (2)
-
-
-
-
Spermatophyta
-
Angiospermae (1)
-
Gymnospermae
-
Coniferales
-
Araucariaceae (1)
-
-
Cordaitales (3)
-
Glossopteridales
-
Glossopteris
-
Glossopteris flora (1)
-
-
-
Pteridospermae (1)
-
-
-
-
prokaryotes (1)
-
-
geochronology methods
-
tree rings (2)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (2)
-
Pleistocene
-
upper Pleistocene (2)
-
-
-
Tertiary
-
Neogene
-
Miocene
-
Barstow Formation (1)
-
lower Miocene (1)
-
middle Miocene (1)
-
-
-
Paleogene
-
Calvert Bluff Formation (1)
-
Eocene
-
lower Eocene
-
Ypresian (1)
-
-
-
Paleocene
-
lower Paleocene
-
Danian (2)
-
K-T boundary (1)
-
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (3)
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (2)
-
Aptian (1)
-
-
Middle Cretaceous (2)
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Toarcian (1)
-
-
-
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Brazil Formation (1)
-
Cumberland Group (1)
-
Joggins Formation (1)
-
Middle Pennsylvanian
-
Moscovian (1)
-
-
Upper Pennsylvanian
-
Kasimovian (2)
-
Missourian (1)
-
-
-
Upper Carboniferous (2)
-
-
Ordovician (1)
-
Permian
-
Guadalupian
-
Wordian (1)
-
-
Middle Permian (1)
-
Upper Permian
-
Kazanian (1)
-
-
-
Silurian (1)
-
upper Paleozoic (1)
-
-
Phanerozoic (1)
-
Precambrian
-
Archean (1)
-
upper Precambrian
-
Proterozoic
-
Paleoproterozoic (1)
-
-
-
-
-
minerals
-
organic minerals
-
amber (1)
-
-
sulfates (1)
-
sulfides
-
pyrite (1)
-
-
-
Primary terms
-
absolute age (1)
-
Africa
-
Limpopo Basin (1)
-
-
Antarctica (2)
-
Arctic region
-
Svalbard (1)
-
-
Asia
-
Siberia (2)
-
-
Atlantic Ocean
-
North Atlantic
-
Blake Plateau
-
Blake Nose (1)
-
-
-
South Atlantic
-
Walvis Ridge (1)
-
-
-
atmosphere (2)
-
Australasia
-
Australia (1)
-
-
bacteria (1)
-
bibliography (1)
-
biogeography (6)
-
Canada
-
Arctic Archipelago (1)
-
Eastern Canada
-
Baffin Island (1)
-
Maritime Provinces
-
Nova Scotia (1)
-
-
-
Nunavut
-
Baffin Island (1)
-
-
-
carbon
-
C-13/C-12 (5)
-
C-14 (1)
-
organic carbon (1)
-
-
Cenozoic
-
Quaternary
-
Holocene (2)
-
Pleistocene
-
upper Pleistocene (2)
-
-
-
Tertiary
-
Neogene
-
Miocene
-
Barstow Formation (1)
-
lower Miocene (1)
-
middle Miocene (1)
-
-
-
Paleogene
-
Calvert Bluff Formation (1)
-
Eocene
-
lower Eocene
-
Ypresian (1)
-
-
-
Paleocene
-
lower Paleocene
-
Danian (2)
-
K-T boundary (1)
-
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (3)
-
-
-
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Amniota (1)
-
Amphibia (1)
-
Mammalia
-
Theria
-
Eutheria
-
Rodentia (1)
-
-
-
-
Reptilia (1)
-
-
-
-
climate change (7)
-
data processing (6)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 74
-
DSDP Site 527 (1)
-
DSDP Site 528 (1)
-
-
-
-
Eurasia (1)
-
Europe
-
Russian Plain (1)
-
Ukraine
-
Boltyshka Depression (2)
-
Ukrainian Shield (1)
-
-
Western Europe
-
France
-
Oise France (1)
-
-
-
-
geomorphology (1)
-
hydrology (1)
-
Indian Ocean
-
Andaman Sea (1)
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Insecta
-
Pterygota
-
Neoptera
-
Endopterygota
-
Hymenoptera (1)
-
-
-
-
-
-
-
Brachiopoda (2)
-
Bryozoa (1)
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca (1)
-
Protista
-
Foraminifera
-
Fusulinina
-
Fusulinidae (1)
-
-
-
-
Vermes
-
Annelida (1)
-
-
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
-
stable isotopes
-
C-13/C-12 (5)
-
-
-
land use (1)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (2)
-
Aptian (1)
-
-
Middle Cretaceous (2)
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Toarcian (1)
-
-
-
-
North America
-
Gulf Coastal Plain (1)
-
-
Northern Hemisphere (1)
-
Ocean Drilling Program
-
Leg 171B
-
ODP Site 1049 (1)
-
-
-
Pacific Ocean
-
West Pacific
-
Sunda Shelf (1)
-
-
-
paleobotany (1)
-
paleoclimatology (16)
-
paleoecology (14)
-
paleogeography (3)
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Brazil Formation (1)
-
Cumberland Group (1)
-
Joggins Formation (1)
-
Middle Pennsylvanian
-
Moscovian (1)
-
-
Upper Pennsylvanian
-
Kasimovian (2)
-
Missourian (1)
-
-
-
Upper Carboniferous (2)
-
-
Ordovician (1)
-
Permian
-
Guadalupian
-
Wordian (1)
-
-
Middle Permian (1)
-
Upper Permian
-
Kazanian (1)
-
-
-
Silurian (1)
-
upper Paleozoic (1)
-
-
palynomorphs
-
miospores
-
pollen (2)
-
-
-
Phanerozoic (1)
-
Plantae
-
Pteridophyta
-
Lycopsida
-
Lepidodendron (1)
-
Stigmaria (1)
-
-
Sphenopsida
-
Equisetales
-
Calamites (2)
-
-
-
-
Spermatophyta
-
Angiospermae (1)
-
Gymnospermae
-
Coniferales
-
Araucariaceae (1)
-
-
Cordaitales (3)
-
Glossopteridales
-
Glossopteris
-
Glossopteris flora (1)
-
-
-
Pteridospermae (1)
-
-
-
-
Precambrian
-
Archean (1)
-
upper Precambrian
-
Proterozoic
-
Paleoproterozoic (1)
-
-
-
-
sea-level changes (2)
-
sedimentary rocks
-
carbonate rocks
-
wackestone (1)
-
-
-
sediments
-
marine sediments (2)
-
-
soils
-
forest soils (1)
-
-
South America
-
Brazil
-
Rio Grande do Norte Brazil (1)
-
-
-
spectroscopy (1)
-
stratigraphy (2)
-
sulfur (1)
-
tectonics (1)
-
United States
-
Alabama
-
Choctaw County Alabama (1)
-
-
Arkansas (1)
-
California
-
Southern California (1)
-
-
Illinois Basin (1)
-
Indiana
-
Clay County Indiana (1)
-
-
Mississippi
-
Choctaw County Mississippi (1)
-
-
New Mexico
-
Socorro County New Mexico (1)
-
-
Tennessee (1)
-
Texas
-
Bastrop County Texas (1)
-
Limestone County Texas (1)
-
Robertson County Texas (1)
-
Rusk County Texas (1)
-
-
-
weathering (1)
-
-
rock formations
-
Deccan Traps (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
wackestone (1)
-
-
-
-
sediments
-
sediments
-
marine sediments (2)
-
-
-
soils
-
paleosols (1)
-
soils
-
forest soils (1)
-
-
biomes
Pleistocene Sunda Shelf submersion-exposure cycles initiate vegetation Walker Circulation feedback
Middle Miocene fire activity and C 4 vegetation expansion in the Barstow Formation, California, USA
The megathermal ant genus Gesomyrmex (Formicidae: Formicinae), palaeoindicator of wide latitudinal biome homogeneity during the PETM
Temperature change in subtropical southeastern Africa during the past 790,000 yr
EVALUATING NORTHERN HIGH-LATITUDE PALEOCLIMATE MODEL RESULTS USING PALEOBOTANICAL EVIDENCE FROM THE MIDDLE CRETACEOUS
Abstract: Climate plays a significant role in determining the styles of depositional processes at different latitudes, which in turn influence the locations of hydrocarbon systems. Results of climate modeling may therefore provide important information for predicting the presence or absence of suitable hydrocarbon plays. To determine whether the models provide realistic results, the critical step is to validate the model results against proxy data where they are available. Paleoclimate proxy data are most often derived from more accessible low- to midlatitude regions and are biased towards warm climate states. However, general circulation models (GCMs) have traditionally been biased to colder temperatures, in particular at high-latitudes, struggling to maintain the high-latitude regions warm enough to sustain forests that were present during greenhouse periods, such as the mid-Cretaceous (~130–89 Ma), without exaggerated warming of the equatorial regions. To improve this approach, the HadCM3L coupled atmosphere–ocean GCM, a state-of-the-art model for the long simulations required to reach an equilibrium climate, was run for each stage of the Cretaceous using new paleogeographic base maps. Here, we compare the results for the Aptian (118.5 Ma) and Albian (105.8 Ma) with paleoclimate proxy data from the high northern latitudes in order to determine if the model produces viable results for this region. Paleoclimate analysis of fossil wood from conifer forests from Svalbard of Aptian–Albian age suggests that they grew in moist cool upland areas adjacent to warmer temperate lowland regions, probably with rivers and/or swamps present. Studies of conifers from the Canadian Arctic islands indicate that they grew under slightly cooler conditions than on Svalbard, similar to northern Canada today. The HadCM3L GCM results for Svalbard show that the dominant biome was evergreen taiga/montane forest with lowland temperate vegetation present during the Albian Stage, possibly with an element of deciduous taiga/montane forest in the Aptian (both cold boreal forests with short hot summers according to the Köppen–Geiger classification). The modeled mean annual temperature was ~−3.7° C at the sample sites, with summer temperatures rising to a mean of ~18° C during the Albian. Mean annual precipitation was ~571 mm. In the Canadian Arctic, the model results indicate that the biomes were more mixed than on Svalbard. The Aptian biome was dominantly deciduous taiga/montane forest with temperate vegetation in low-lying areas. The Albian landscape was dominated by evergreen taiga/montane forest, with some elements of deciduous taiga. Both stages were classified as cold boreal forest with short hot summers under the Köppen-Geiger classification scheme. Mean annual temperature was modeled to be ~−6.5° C at the sample sites, with summer temperatures reaching a mean of ~13° C, and mean annual precipitation was ~406 mm. These results suggest that the HadCM3L GCM, coupled with updated paleogeographic maps, can produce a good match to the climate proxy data in these difficult-to-model high-latitude areas.
Sedimentary Sulfides
Dryland vegetation from the Middle Pennsylvanian of Indiana (Illinois Basin): the dryland biome in glacioeustatic, paleobiogeographic, and paleoecologic context
Long-term resilience decline in plant ecosystems across the Danian Dan-C2 hyperthermal event, Boltysh crater, Ukraine
The early Danian hyperthermal event at Boltysh (Ukraine): Relation to Cretaceous-Paleogene boundary events
The Boltysh meteorite impact crater formed in the Ukrainian Shield on the margin of the Tethys Ocean a few thousand years before the Cretaceous-Paleogene boundary and was rapidly filled by a freshwater lake. Sediments filling the lake vary from early lacustrine turbidites and silts to ~300 m of fine silts, organic carbon–rich muds, oil shales, and lamenites that record early Danian terrestrial climate signals at high temporal resolution. Combined carbon isotope and palynological data show that the fine-grained organic carbon–rich lacustrine sediments preserve a uniquely complete and detailed negative carbon isotope excursion in an expanded section of several hundred meters. The position of the carbon isotope excursion in the early Danian stage of the Paleogene period, around 200 k.y. above the Cretaceous-Paleogene boundary, leads us to correlate it to the Dan-C2 carbon isotope excursion recorded in marine sediments of the same age. The more complete Boltysh carbon isotope excursion record indicates a δ 13 C shift of around -3‰, but also a more extended recovery period, strikingly similar in pattern to the highest fidelity carbon isotope excursion records available for the Toarcian and Paleocene-Eocene hyperthermal events. Changes in floral communities through the carbon isotope excursion recorded at Boltysh reflect changing biomes caused by rapidly warming climate, followed by recovery, indicating that this early Danian hyperthermal event had a similar duration to the Toarcian and Paleocene-Eocene events.