- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Arabian Peninsula
-
Oman (1)
-
-
Far East
-
China
-
Xinjiang China (1)
-
-
-
Middle East (1)
-
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
North Sea
-
Ekofisk Field (1)
-
Valhall Field (1)
-
-
-
-
Australasia
-
Australia (1)
-
-
Canada
-
Western Canada
-
Alberta (1)
-
British Columbia (1)
-
-
-
Europe
-
Central Europe
-
Germany
-
Lower Saxony Germany (1)
-
-
-
Western Europe
-
Ireland (1)
-
United Kingdom
-
Great Britain
-
England
-
Northumberland England (1)
-
Wessex Basin (1)
-
-
-
Northern Ireland (1)
-
-
-
-
Green River basin (1)
-
North America
-
Appalachian Basin (1)
-
Michigan Basin (1)
-
Rocky Mountains (1)
-
Western Canada Sedimentary Basin (1)
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
Permian Basin (3)
-
San Juan Basin (1)
-
Silo Field (1)
-
United States
-
Anadarko Basin (1)
-
Arkoma Basin (2)
-
California
-
Central California (1)
-
Kern County California
-
Lost Hills Field (1)
-
-
San Joaquin Valley (1)
-
-
Central Basin Platform (1)
-
Colorado
-
Mahogany Zone (1)
-
Wattenberg Field (1)
-
-
Delaware Basin (3)
-
Denver Basin (1)
-
Illinois Basin (2)
-
Kansas (1)
-
Kentucky (2)
-
Midcontinent (1)
-
Nebraska (1)
-
New Mexico
-
Eddy County New Mexico (1)
-
-
North Dakota (1)
-
Oklahoma
-
Pontotoc County Oklahoma (1)
-
-
Ouachita Belt (5)
-
Pennsylvania
-
Lycoming County Pennsylvania (1)
-
Washington County Pennsylvania (1)
-
-
Texas
-
Culberson County Texas (1)
-
Dallas County Texas
-
Dallas Texas (3)
-
-
Denton County Texas (8)
-
East Texas (1)
-
Eastland County Texas (2)
-
Fort Worth Basin (57)
-
Gonzales County Texas (1)
-
Hamilton County Texas (1)
-
Johnson County Texas (2)
-
La Salle County Texas (1)
-
Lampasas County Texas (2)
-
Llano Uplift (1)
-
Midland Basin (2)
-
Parker County Texas (4)
-
Reeves County Texas (1)
-
San Saba County Texas (2)
-
Tarrant County Texas
-
Fort Worth Texas (3)
-
-
Trinity Aquifer (2)
-
Ward County Texas (1)
-
West Texas (3)
-
Wise County Texas (11)
-
Young County Texas (1)
-
-
Western U.S. (1)
-
Wyoming (1)
-
-
-
commodities
-
bitumens
-
asphalt (1)
-
-
energy sources (1)
-
oil and gas fields (17)
-
petroleum
-
natural gas
-
shale gas (20)
-
-
shale oil (3)
-
-
tight sands (2)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (6)
-
organic carbon (2)
-
-
hydrogen
-
D/H (1)
-
-
isotope ratios (7)
-
isotopes
-
stable isotopes
-
C-13/C-12 (6)
-
D/H (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
iron (1)
-
-
nitrogen (3)
-
oxygen (1)
-
sulfur (2)
-
-
fossils
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (1)
-
-
-
-
Protista
-
Foraminifera (1)
-
-
-
microfossils
-
Conodonta (1)
-
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
Green River Formation (2)
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Muddy Sandstone (1)
-
-
Upper Cretaceous
-
Campanian
-
lower Campanian (1)
-
-
Carlile Shale (1)
-
Fort Hays Limestone Member (1)
-
Gulfian
-
Austin Chalk (1)
-
Eagle Ford Formation (11)
-
-
Lewis Shale (1)
-
Niobrara Formation (1)
-
Pierre Shale (1)
-
Sharon Springs Member (1)
-
Smoky Hill Chalk Member (1)
-
Turonian
-
upper Turonian (1)
-
-
-
-
Jurassic
-
Posidonia Shale (2)
-
Upper Jurassic
-
Bossier Formation (1)
-
Cotton Valley Group (2)
-
Haynesville Formation (7)
-
Kimmeridge Clay (1)
-
-
-
Triassic
-
Lower Triassic (1)
-
Middle Triassic
-
Doig Formation (1)
-
-
Montney Formation (2)
-
-
-
Paleozoic
-
Cambrian (2)
-
Carboniferous
-
Mississippian
-
Barnett Shale (119)
-
Middle Mississippian (1)
-
Upper Mississippian
-
Chesterian (2)
-
Meramecian (1)
-
-
-
Pennsylvanian
-
Lower Pennsylvanian
-
Morrowan (2)
-
-
Marble Falls Group (4)
-
Middle Pennsylvanian
-
Atokan (1)
-
-
Red Fork Sandstone (1)
-
Smithwick Shale (2)
-
Upper Pennsylvanian
-
Canyon Group (2)
-
-
-
Upper Carboniferous
-
Millstone Grit (1)
-
-
-
Devonian
-
Middle Devonian
-
Marcellus Shale (6)
-
-
Upper Devonian
-
Frasnian (1)
-
Huron Member (1)
-
Ohio Shale (2)
-
-
-
New Albany Shale (2)
-
Ordovician
-
Lower Ordovician
-
Ellenburger Group (10)
-
-
Middle Ordovician
-
Simpson Group (1)
-
-
Viola Limestone (2)
-
-
Permian
-
Lower Permian
-
Cisuralian (1)
-
Leonardian
-
Bone Spring Limestone (1)
-
-
Wolfcampian (1)
-
-
-
upper Paleozoic
-
Antrim Shale (1)
-
Bakken Formation (2)
-
-
Woodford Shale (7)
-
-
Precambrian
-
upper Precambrian
-
Proterozoic (1)
-
-
-
-
metamorphic rocks
-
turbidite (1)
-
-
minerals
-
carbonates
-
calcite (3)
-
-
silicates
-
framework silicates
-
silica minerals
-
quartz (1)
-
-
-
sheet silicates
-
clay minerals
-
smectite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
Asia
-
Arabian Peninsula
-
Oman (1)
-
-
Far East
-
China
-
Xinjiang China (1)
-
-
-
Middle East (1)
-
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
North Sea
-
Ekofisk Field (1)
-
Valhall Field (1)
-
-
-
-
Australasia
-
Australia (1)
-
-
bitumens
-
asphalt (1)
-
-
Canada
-
Western Canada
-
Alberta (1)
-
British Columbia (1)
-
-
-
carbon
-
C-13/C-12 (6)
-
organic carbon (2)
-
-
catalogs (1)
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
Green River Formation (2)
-
-
-
-
-
data processing (11)
-
deformation (7)
-
diagenesis (6)
-
earthquakes (20)
-
energy sources (1)
-
Europe
-
Central Europe
-
Germany
-
Lower Saxony Germany (1)
-
-
-
Western Europe
-
Ireland (1)
-
United Kingdom
-
Great Britain
-
England
-
Northumberland England (1)
-
Wessex Basin (1)
-
-
-
Northern Ireland (1)
-
-
-
-
faults (17)
-
fractures (11)
-
geochemistry (7)
-
geology (1)
-
geophysical methods (47)
-
ground water (3)
-
heat flow (3)
-
hydrogen
-
D/H (1)
-
-
hydrogeology (1)
-
inclusions
-
fluid inclusions (1)
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (1)
-
-
-
-
Protista
-
Foraminifera (1)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (6)
-
D/H (1)
-
Sr-87/Sr-86 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Muddy Sandstone (1)
-
-
Upper Cretaceous
-
Campanian
-
lower Campanian (1)
-
-
Carlile Shale (1)
-
Fort Hays Limestone Member (1)
-
Gulfian
-
Austin Chalk (1)
-
Eagle Ford Formation (11)
-
-
Lewis Shale (1)
-
Niobrara Formation (1)
-
Pierre Shale (1)
-
Sharon Springs Member (1)
-
Smoky Hill Chalk Member (1)
-
Turonian
-
upper Turonian (1)
-
-
-
-
Jurassic
-
Posidonia Shale (2)
-
Upper Jurassic
-
Bossier Formation (1)
-
Cotton Valley Group (2)
-
Haynesville Formation (7)
-
Kimmeridge Clay (1)
-
-
-
Triassic
-
Lower Triassic (1)
-
Middle Triassic
-
Doig Formation (1)
-
-
Montney Formation (2)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
iron (1)
-
-
nitrogen (3)
-
North America
-
Appalachian Basin (1)
-
Michigan Basin (1)
-
Rocky Mountains (1)
-
Western Canada Sedimentary Basin (1)
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
oil and gas fields (17)
-
oxygen (1)
-
paleoecology (1)
-
paleogeography (3)
-
Paleozoic
-
Cambrian (2)
-
Carboniferous
-
Mississippian
-
Barnett Shale (119)
-
Middle Mississippian (1)
-
Upper Mississippian
-
Chesterian (2)
-
Meramecian (1)
-
-
-
Pennsylvanian
-
Lower Pennsylvanian
-
Morrowan (2)
-
-
Marble Falls Group (4)
-
Middle Pennsylvanian
-
Atokan (1)
-
-
Red Fork Sandstone (1)
-
Smithwick Shale (2)
-
Upper Pennsylvanian
-
Canyon Group (2)
-
-
-
Upper Carboniferous
-
Millstone Grit (1)
-
-
-
Devonian
-
Middle Devonian
-
Marcellus Shale (6)
-
-
Upper Devonian
-
Frasnian (1)
-
Huron Member (1)
-
Ohio Shale (2)
-
-
-
New Albany Shale (2)
-
Ordovician
-
Lower Ordovician
-
Ellenburger Group (10)
-
-
Middle Ordovician
-
Simpson Group (1)
-
-
Viola Limestone (2)
-
-
Permian
-
Lower Permian
-
Cisuralian (1)
-
Leonardian
-
Bone Spring Limestone (1)
-
-
Wolfcampian (1)
-
-
-
upper Paleozoic
-
Antrim Shale (1)
-
Bakken Formation (2)
-
-
Woodford Shale (7)
-
-
petroleum
-
natural gas
-
shale gas (20)
-
-
shale oil (3)
-
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic (1)
-
-
-
rock mechanics (4)
-
sea-level changes (1)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
dolostone (1)
-
limestone
-
micrite (1)
-
-
packstone (1)
-
-
clastic rocks
-
black shale (4)
-
conglomerate (1)
-
marl (2)
-
mudstone (8)
-
sandstone (2)
-
shale (37)
-
siltstone (1)
-
-
gas shale (11)
-
oil shale (2)
-
-
sedimentary structures
-
planar bedding structures
-
bedding (1)
-
laminations (2)
-
rhythmic bedding (1)
-
-
secondary structures
-
concretions (2)
-
-
-
sedimentation (4)
-
sediments
-
clastic sediments
-
clay (3)
-
-
-
spectroscopy (1)
-
stratigraphy (1)
-
structural geology (1)
-
sulfur (2)
-
tectonics
-
salt tectonics (1)
-
-
United States
-
Anadarko Basin (1)
-
Arkoma Basin (2)
-
California
-
Central California (1)
-
Kern County California
-
Lost Hills Field (1)
-
-
San Joaquin Valley (1)
-
-
Central Basin Platform (1)
-
Colorado
-
Mahogany Zone (1)
-
Wattenberg Field (1)
-
-
Delaware Basin (3)
-
Denver Basin (1)
-
Illinois Basin (2)
-
Kansas (1)
-
Kentucky (2)
-
Midcontinent (1)
-
Nebraska (1)
-
New Mexico
-
Eddy County New Mexico (1)
-
-
North Dakota (1)
-
Oklahoma
-
Pontotoc County Oklahoma (1)
-
-
Ouachita Belt (5)
-
Pennsylvania
-
Lycoming County Pennsylvania (1)
-
Washington County Pennsylvania (1)
-
-
Texas
-
Culberson County Texas (1)
-
Dallas County Texas
-
Dallas Texas (3)
-
-
Denton County Texas (8)
-
East Texas (1)
-
Eastland County Texas (2)
-
Fort Worth Basin (57)
-
Gonzales County Texas (1)
-
Hamilton County Texas (1)
-
Johnson County Texas (2)
-
La Salle County Texas (1)
-
Lampasas County Texas (2)
-
Llano Uplift (1)
-
Midland Basin (2)
-
Parker County Texas (4)
-
Reeves County Texas (1)
-
San Saba County Texas (2)
-
Tarrant County Texas
-
Fort Worth Texas (3)
-
-
Trinity Aquifer (2)
-
Ward County Texas (1)
-
West Texas (3)
-
Wise County Texas (11)
-
Young County Texas (1)
-
-
Western U.S. (1)
-
Wyoming (1)
-
-
waste disposal (2)
-
well-logging (4)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
dolostone (1)
-
limestone
-
micrite (1)
-
-
packstone (1)
-
-
clastic rocks
-
black shale (4)
-
conglomerate (1)
-
marl (2)
-
mudstone (8)
-
sandstone (2)
-
shale (37)
-
siltstone (1)
-
-
gas shale (11)
-
oil shale (2)
-
-
siliciclastics (3)
-
turbidite (1)
-
-
sedimentary structures
-
sedimentary structures
-
planar bedding structures
-
bedding (1)
-
laminations (2)
-
rhythmic bedding (1)
-
-
secondary structures
-
concretions (2)
-
-
-
stratification (1)
-
-
sediments
-
sediments
-
clastic sediments
-
clay (3)
-
-
-
siliciclastics (3)
-
turbidite (1)
-
Barnett Shale
Stray gas source determination using forensic geochemical data
Opening-mode fracturing and cementation during hydrocarbon generation in shale: An example from the Barnett Shale, Delaware Basin, West Texas
Revisiting 2013–2014 Azle seismicity to understand the role of Barnett production on stress propagation and fault stability
Site Amplifications from Earthquake Data and V S 30 in the Fort Worth Basin, Texas
Low pressure buildup with large disposal volumes of oil field water: A flow model of the Ellenburger Group, Fort Worth Basin, northcentral Texas
Specific surface area: A reliable predictor of creep and stress relaxation in gas shales
Identification of thermally mature total organic carbon-rich layers in shale formations using an effective machine-learning approach
Geochemical characterization and classification of crude oils of the Permian Basin, west Texas and southeastern New Mexico
A method to compensate for migration stretch to improve the resolution of amplitude variation with offset, S-impedance ( Z S ), and density ( ρ )
Azimuthal anisotropy analysis applied to naturally fractured unconventional reservoirs: A Barnett Shale example
Normal faulting activated by hydraulic fracturing: A case study from the Barnett Shale, Fort Worth Basin
ABSTRACT Scanning electron microscopy (SEM) has revolutionized our understanding of shale petroleum systems through microstructural characterization of dispersed organic matter (OM). However, as a result of the low atomic weight of carbon, all OM appears black in SEM (BSE [backscattered electron] image) regardless of differences in thermal maturity or OM type (kerogen types or solid bitumen). Traditional petrographic identification of OM uses optical microscopy, where reflectance (%R o ), form, relief, and fluorescence can be used to discern OM types and thermal maturation stage. Unfortunately, most SEM studies of shale OM do not employ correlative optical techniques, leading to misidentifications or to the conclusion that all OM (i.e., kerogen and solid bitumen) is the same. To improve the accuracy of SEM identifications of dispersed OM in shale, correlative light and electron microscopy (CLEM) was used during this study to create optical and SEM images of OM in the same fields of view (500× magnification) under white light, blue light, secondary electron (SE), and BSE conditions. Samples ( n = 8) of varying thermal maturities and typical of the North American shale petroleum systems were used, including the Green River Mahogany Zone, Bakken Formation, Ohio Shale, Eagle Ford Formation, Barnett Formation, Haynesville Formation, and Woodford Shale. The CLEM image sets demonstrate the importance of correlative microscopy by showing how easily OM can be misidentified when viewed by SEM alone. Without CLEM techniques, petrographic data from SEM such as observations of organic nanoporosity may be misinterpreted, resulting in false or ambiguous results and impairing an improved understanding of organic diagenesis and catagenesis.