- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
commodities
-
refractory materials (1)
-
-
elements, isotopes
-
metals
-
iron (1)
-
-
-
metamorphic rocks
-
metamorphic rocks
-
impactites (1)
-
-
-
meteorites
-
meteorites
-
stony meteorites
-
chondrites (1)
-
-
-
-
minerals
-
alloys (1)
-
-
Primary terms
-
asteroids (1)
-
continental drift (1)
-
earthquakes (1)
-
geodesy (1)
-
glacial geology (1)
-
inclusions (1)
-
metals
-
iron (1)
-
-
metamorphic rocks
-
impactites (1)
-
-
metamorphism (1)
-
meteorites
-
stony meteorites
-
chondrites (1)
-
-
-
Moon (1)
-
ocean waves (1)
-
planetology (1)
-
sea water (1)
-
Sun (1)
-
tectonophysics (1)
-
thermal analysis (1)
-
angular momentum
Modeling of Ocean Wave Impacts on Crevassed Ice Shelves
Role of Earth-Moon rotational dynamics in the shaping of the surface of our planet
ABSTRACT The age of the Moon (1.55–1.78 b.y. old) as calculated from its regression as a function of geological time is much younger than the currently accepted age (ca. 4.52 Ga) determined by radiometric dating of lunar samples collected by Apollo astronauts. This discrepancy has posed a serious challenge for planetary scientists to account satisfactorily for the formation and subsequent breakup of Pangea. Conventional orbital models of the Earth-Moon system cannot explain why Pangea formed on only one hemisphere of Earth, whereas this study’s proposed two-stage rotation model can provide a plausible explanation. Calculations and a plot of the Earth-Moon separation distance against geologic age suggest that, during their first ~3.0 b.y., Earth and the Moon were mutually tidally locked, rotating as an integrated unit about a barycenter (designated as stage I rotation). Beginning 1.55 Ga, however, Earth disengaged from its tidal lock with the Moon and entered its current orbital mode (designated as stage II rotation). The dynamics associated with the two rotational modes of the Earth-Moon system throughout Earth’s history are hypothesized to constitute the driving forces for the migration and coalescence of landmasses during stage I rotation to create Pangea, and its ultimate breakup and drifting during stage II rotation.
Terrestrial ejecta suborbital transport and the rotating frame transform
ABSTRACT Suborbital analysis (SA) is presented here as the study of ballistics around a spherical planet. SA is the subset of orbital mechanics where the elliptic trajectory intersects Earth’s surface at launch point A and fall point B , known as the A -to- B suborbital problem, both launch and fall points being vector variables. Spreadsheet tools are offered for solution to this problem, based on the preferred simplified two-body model. Although simplistic in top-level description, this problem places essential reliance on reference frame transformations. Launch conditions in the local frame of point A and rotating with Earth require conversion to the nonrotating frame for correct trajectory definition, with the reverse process required for complete solution. This application of dynamics requires diligent accounting to avoid invalid results. Historic examples are provided that lack the requisite treatment, with the appropriate set of solution equations also included. Complementary spreadsheet tools SASolver and Helix solve the A -to- B problem for loft duration from minimum through 26 h. All provided spreadsheet workbook files contain the novel three-dimensional latitude and longitude plotter GlobePlot. A global ejecta pattern data set calculated using SASolver is presented. As visualized through GlobePlot, SASolver and Helix provide solutions to different forms of the A -to- B problem, in an effort to avoid errors similar to the historic misstep examples offered as a supplement. Operating guidelines and limitations of the tools are presented along with diagrams from each step. The goal is to enable mechanically valid interdisciplinary terrestrial ejecta research through novel perspective and quality graphical tools, so others may succeed where 1960s National Aeronautics and Space Administration researchers did not.