- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
North America
-
Appalachian Basin (3)
-
-
United States
-
Ohio
-
Belmont County Ohio (1)
-
-
Pennsylvania
-
Greene County Pennsylvania (1)
-
-
West Virginia
-
Doddridge County West Virginia (1)
-
Marion County West Virginia (1)
-
Marshall County West Virginia (1)
-
Monongalia County West Virginia (1)
-
Preston County West Virginia (1)
-
Tyler County West Virginia (2)
-
Wetzel County West Virginia (5)
-
-
-
-
commodities
-
oil and gas fields (2)
-
petroleum
-
natural gas (2)
-
-
-
geologic age
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Upper Pennsylvanian (1)
-
-
-
Devonian
-
Middle Devonian
-
Hamilton Group (1)
-
Mahantango Formation (1)
-
Marcellus Shale (1)
-
Onondaga Limestone (1)
-
Tully Limestone (1)
-
-
-
Ordovician
-
Upper Ordovician (1)
-
-
-
-
minerals
-
sulfides
-
pyrite (1)
-
-
-
Primary terms
-
diagenesis (1)
-
geochemistry (1)
-
North America
-
Appalachian Basin (3)
-
-
oil and gas fields (2)
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Upper Pennsylvanian (1)
-
-
-
Devonian
-
Middle Devonian
-
Hamilton Group (1)
-
Mahantango Formation (1)
-
Marcellus Shale (1)
-
Onondaga Limestone (1)
-
Tully Limestone (1)
-
-
-
Ordovician
-
Upper Ordovician (1)
-
-
-
petroleum
-
natural gas (2)
-
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
clastic rocks
-
mudstone (1)
-
-
-
sediments
-
marine sediments (1)
-
-
stratigraphy (1)
-
United States
-
Ohio
-
Belmont County Ohio (1)
-
-
Pennsylvania
-
Greene County Pennsylvania (1)
-
-
West Virginia
-
Doddridge County West Virginia (1)
-
Marion County West Virginia (1)
-
Marshall County West Virginia (1)
-
Monongalia County West Virginia (1)
-
Preston County West Virginia (1)
-
Tyler County West Virginia (2)
-
Wetzel County West Virginia (5)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
clastic rocks
-
mudstone (1)
-
-
-
siliciclastics (1)
-
-
sediments
-
sediments
-
marine sediments (1)
-
-
siliciclastics (1)
-
Wetzel County West Virginia
ABSTRACT This study examines the usefulness of accommodation plots (Fischer plots) as a means of correlating mixed carbonate-siliciclastic strata in the subsurface. Fischer plots have been widely used to extract accommodation changes from carbonate platforms, but there are few published studies of siliciclastic or mixed carbonate-siliciclastic environments. The Middle Devonian of the Appalachian Basin is penetrated by thousands of wells, is exposed in numerous exceptional outcrops, and is an excellent place to test the usefulness of accommodation history plots as correlation tools. In the past, researchers have used cores, well cuttings, well logs, and outcrop gamma-ray profiles to correlate between outcrop and subsurface data, but all these methods have their limitations. Gamma-ray logs for wells penetrating the Middle Devonian from eight locations, from Preston County in the east to Wetzel County, West Virginia, in the west, were used in this study. Accommodation cycle thicknesses were measured from gamma-ray logs, printed at a vertical scale of one inch per ten feet (2.5 cm/3 m). The accommodation cycle thickness data were entered into Antun Husinec’s FISCHERPLOTS program to produce accommodation plots. Next, well-documented, outcrop-based sequence stratigraphy was used to help interpret the results of the accommodation plots. This study demonstrates that using accommodation plots is a novel way of overcoming the uncertainties and biases of other methods. The use of this approach in other mixed carbonate-siliciclastic successions with abundant subsurface data would help to demonstrate that Fischer plots are a novel and useful approach that can help remove many of the uncertainties and biases encountered in stratigraphic correlation.
ABSTRACT Organic-rich mudstones of the Appalachian Basin hold a sizable portion of the natural gas produced in the United States. Indeed, in 2015, Pennsylvania and West Virginia accounted for 21% of produced natural gas, driven in part by production from the Point Pleasant Limestone. The critical role that unconventional reservoirs will play in future global energy use necessitates the need for an enhanced understanding of those geological aspects that shape and influence their reservoir architecture. Foremost among these is a clearer understanding of the preservation and accumulation of organic carbon, as it is the source of hydrocarbons, and often provides the dominant host of interconnected porosity and hydrocarbon storage. To this end, pyrite morphology can offer insight into the redox conditions of the bottom and pore water environment at the time of sediment deposition and early diagenesis and can be especially useful in the analysis of deposits devoid of redox sensitive trace metals. Pyrite contained in cuttings and core chips retrieved from vertical and horizontal Point Pleasant Limestone wells were analyzed by scanning electron microscope. Results demonstrate a dearth of pyrite in the Point Pleasant (0.02–1.7% of the surface area analyzed). Pyrite morphology is dominated by euhedral grains and masses (~80% of pyrite encountered) co-occurring with infrequent framboids. Framboids are uniformly small (average = 4.7 μm) with just a few examples >10 μm. The presence of small amounts of euhedral pyrite grains and masses is consistent with accumulation under a dysoxic water column. Conversely, the size of the framboids suggests that they formed in a water column containing free hydrogen sulfide. A model invoking a lack of reactants necessary to sustain diagenetic pyrite growth in anoxic pore waters may explain this apparent paradox. In such a case, the framboid size distribution may reflect newly forming diagenetic framboids competing for a finite amount of reactants resulting in a population of small framboids and few large examples. Indeed, the low total iron/aluminum (Fe/Al) content of the Point Pleasant (average Fe/Al = 0.45) would indicate a low delivery of reactive iron to the seafloor during Point Pleasant deposition. The data suggests a model in which organic carbon preservation occurred by rapid burial and removal from oxygen-bearing water. In turn, more organic-rich and potentially higher quality reservoir facies of the Point Pleasant Limestone occur in areas of higher clastic delivery to basin.
Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA
Application of a new hybrid particle swarm optimization-mixed kernels function-based support vector machine model for reservoir porosity prediction: A case study in Jacksonburg-Stringtown oil field, West Virginia, USA
The Facies and Depositional Environment of an Upper Pennsylvanian Limestone, Northern Appalachian Basin
Abstract The Redstone limestone of Platt and Platt (1877) is one of five nonmarine limestone beds in the Upper Pennsylvanian Monongahela Group. The Redstone limestone lies within the lower member (Berryhill and Swanson, 1962) of the Pittsburgh Formation between the thick, economically significant Pittsburgh coal bed (below) and the Redstone coal bed (above), and reaches a thickness of 12 m in some places. In addition to the autochthonous coal and limestone, beds of clay, shale, mudstone, siltstone, and sandstone also occur in the interval between the Pittsburgh and Redstone coal beds. The limestone occurs over at least 10,000 km 2 in the northern Appalachian Basin. The mineralogy of the Redstone limestone is predominantly calcite, ankerite, and quartz. In addition, dolomite, pyrite, feldspar, and clay minerals are present in smaller amounts. The carbonate minerals are most commonly micritic, but spar frequently fills voids in the limestone. Five carbonate facies were identified within the Redstone limestone beds: (1) desiccation breccia with paleosol characteristics, (2) nodular limestone composed of rounded limestone clasts, (3) fossiliferous limestone that is usually organic-rich, with plant debris, pyrite blebs, and nonmarine ostracods, gastropods, and bivalves, (4) massive micritic limestone, and (5) laminated limestone composed of dark and light gray micrite laminae 5 mm or less in thickness. Results of this study indicate that the Redstone limestone beds probably formed in a large, shallow, freshwater lake, or series of lakes, with regular influx of fresh water and fine-grained clastic material. Seasonal changes in rainfall caused wetting and drying of sediment along the shoreline and consequent paleosol development. These seasonal changes were also responsible for at least some of the lamination observed. There was enough wave and current activity to rip up, round, and redeposit intraclasts, and to cause breakage of many of the bivalves, gastropods, and crustaceans.