- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
East Africa
-
Ethiopia (1)
-
-
Southern Africa
-
South Africa (1)
-
-
-
Asia
-
Far East
-
Japan
-
Honshu
-
Ryoke Belt (1)
-
Tochigi Japan (1)
-
-
Sambagawa Belt (1)
-
-
-
-
Atlantic Ocean Islands
-
Azores
-
Faial Island
-
Capelinhos (1)
-
-
-
-
Canada
-
Eastern Canada
-
Ontario
-
Hastings County Ontario
-
Bancroft Ontario (1)
-
-
-
-
-
Central America
-
Guatemala
-
Motagua Fault (1)
-
-
-
Crestmore (1)
-
Elba (1)
-
Europe
-
Alps
-
Piedmont Alps
-
Dora Maira Massif (1)
-
-
Western Alps
-
Cottian Alps
-
Dora Maira Massif (1)
-
-
-
-
Central Europe
-
Germany (1)
-
Slovakia (1)
-
-
Southern Europe
-
Italy
-
Basilicata Italy
-
Potenza Italy (1)
-
-
Latium Italy (1)
-
Piemonte Italy
-
Dora Maira Massif (1)
-
-
-
-
Western Europe
-
Cottian Alps
-
Dora Maira Massif (1)
-
-
United Kingdom
-
Great Britain
-
England
-
Cornwall England (1)
-
-
-
-
-
-
North America
-
North American Cordillera (1)
-
-
Oceania
-
Polynesia
-
Tonga (1)
-
-
-
Twin Lakes (1)
-
United States
-
Arizona
-
Mohave County Arizona (1)
-
-
California
-
Santa Cruz County California (1)
-
-
Maryland
-
Montgomery County Maryland (1)
-
-
New York
-
Adirondack Mountains (1)
-
-
Oregon
-
Lake County Oregon (1)
-
-
-
Vulture Mountain (1)
-
-
commodities
-
aggregate (1)
-
ceramic materials (1)
-
construction materials
-
building stone (1)
-
cement materials (1)
-
-
diamond deposits (1)
-
glass materials (3)
-
metal ores
-
copper ores (1)
-
-
petroleum (1)
-
-
elements, isotopes
-
carbon (2)
-
chemical elements (1)
-
halogens
-
fluorine (1)
-
-
hydrogen
-
deuterium (1)
-
-
isotope ratios (3)
-
isotopes
-
radioactive isotopes
-
Cs-137 (1)
-
-
stable isotopes
-
deuterium (1)
-
Fe-56/Fe-54 (1)
-
O-18/O-16 (2)
-
-
-
metals
-
alkali metals
-
cesium
-
Cs-137 (1)
-
-
lithium (1)
-
potassium (5)
-
rubidium (2)
-
sodium (3)
-
-
alkaline earth metals
-
barium (2)
-
beryllium (1)
-
calcium (3)
-
magnesium (3)
-
strontium (2)
-
-
aluminum (1)
-
arsenic (1)
-
chromium (1)
-
cobalt (2)
-
iron
-
Fe-56/Fe-54 (1)
-
ferric iron (2)
-
ferrous iron (1)
-
-
lead (1)
-
manganese (1)
-
nickel (2)
-
rare earths
-
lutetium (1)
-
-
tin (1)
-
titanium (1)
-
zinc (3)
-
-
oxygen
-
O-18/O-16 (2)
-
-
silicon (1)
-
sulfur (1)
-
-
fossils
-
Invertebrata
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca
-
Bivalvia (1)
-
-
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Middle Cretaceous (1)
-
-
-
Precambrian
-
Adirondack Anorthosite (1)
-
-
-
igneous rocks
-
igneous rocks
-
feldspathoid rocks (1)
-
plutonic rocks
-
diabase (2)
-
diorites (1)
-
gabbros
-
norite (1)
-
-
granites (3)
-
ultramafics
-
peridotites
-
dunite (1)
-
-
-
-
volcanic rocks
-
andesites (1)
-
basalts (2)
-
glasses (1)
-
pyroclastics (1)
-
rhyolites (1)
-
-
-
ophiolite (1)
-
volcanic ash (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses (1)
-
marbles (4)
-
quartzites (3)
-
slates (1)
-
-
ophiolite (1)
-
-
minerals
-
alloys
-
carbides (1)
-
-
arsenates
-
adamite (1)
-
-
carbonates
-
aragonite (4)
-
calcite (7)
-
cancrinite (3)
-
cerussite (1)
-
dolomite (3)
-
ikaite (1)
-
magnesite (5)
-
rhodochrosite (2)
-
siderite (1)
-
smithsonite (1)
-
strontianite (1)
-
witherite (1)
-
-
chromates
-
crocoite (2)
-
-
copper minerals (1)
-
halides
-
chlorides
-
kainite (1)
-
-
fluorides
-
neighborite (1)
-
-
-
minerals (9)
-
native elements
-
diamond (3)
-
-
oxides
-
brucite (2)
-
chromite (1)
-
corundum (4)
-
cuprite (1)
-
diaspore (1)
-
ferrihydrite (1)
-
germanates (2)
-
goethite (2)
-
hematite (1)
-
hydroxides
-
iron hydroxides (1)
-
-
ilmenite (3)
-
iron oxides (1)
-
maghemite (1)
-
magnesioferrite (1)
-
magnetite (1)
-
periclase (4)
-
perovskite (3)
-
rutile (1)
-
spinel (1)
-
spinel group (2)
-
-
phosphates
-
apatite (2)
-
chlorapatite (1)
-
fluorapatite (2)
-
hydroxylapatite (2)
-
lazulite (1)
-
monazite (1)
-
xenotime (1)
-
-
silicates
-
aluminosilicates (3)
-
asbestos (1)
-
borosilicates (2)
-
chain silicates
-
amphibole group
-
clinoamphibole
-
richterite (2)
-
riebeckite (1)
-
tremolite (1)
-
-
-
pyroxene group
-
clinopyroxene
-
aegirine (1)
-
augite (1)
-
clinoenstatite (2)
-
diopside (5)
-
hedenbergite (1)
-
jadeite (2)
-
johannsenite (1)
-
omphacite (1)
-
spodumene (2)
-
-
orthopyroxene
-
enstatite (2)
-
-
-
pyroxmangite (1)
-
-
feldspathoids (2)
-
framework silicates
-
analbite (1)
-
cancrinite (3)
-
danburite (1)
-
feldspar group
-
alkali feldspar
-
celsian (2)
-
K-feldspar (2)
-
microcline (1)
-
orthoclase (1)
-
sanidine (4)
-
-
barium feldspar
-
celsian (2)
-
paracelsian (1)
-
-
plagioclase
-
albite (2)
-
labradorite (1)
-
-
-
leucite (1)
-
nepheline group
-
kalsilite (3)
-
nepheline (2)
-
-
silica minerals
-
agate (1)
-
chalcedony (1)
-
keatite (1)
-
opal (1)
-
quartz (4)
-
stishovite (3)
-
-
sodalite group
-
hauyne (1)
-
sodalite (1)
-
-
zeolite group
-
analcime (1)
-
clinoptilolite (1)
-
erionite (1)
-
natrolite (1)
-
-
-
magnesian silicates (2)
-
orthosilicates
-
nesosilicates
-
garnet group
-
almandine (1)
-
andradite (1)
-
grossular (4)
-
majorite (3)
-
pyrope (5)
-
uvarovite (1)
-
-
kyanite (1)
-
larnite (1)
-
mullite (1)
-
olivine group
-
fayalite (4)
-
forsterite (6)
-
olivine (10)
-
ringwoodite (5)
-
wadsleyite (4)
-
-
phenakite group
-
eucryptite (1)
-
-
zircon group
-
zircon (2)
-
-
-
sorosilicates
-
epidote group
-
epidote (1)
-
-
vesuvianite (1)
-
-
-
sheet silicates
-
chlorite group
-
chamosite (1)
-
chlorite (2)
-
clinochlore (2)
-
-
clay minerals
-
kaolinite (1)
-
montmorillonite (2)
-
smectite (1)
-
-
gillespite (1)
-
mica group
-
muscovite (1)
-
phengite (1)
-
phlogopite (3)
-
-
serpentine group
-
lizardite (2)
-
-
-
-
sulfates
-
alunite (2)
-
barite (1)
-
bassanite (1)
-
epsomite (1)
-
gypsum (2)
-
jarosite (1)
-
kainite (1)
-
-
sulfides
-
chalcopyrite (1)
-
galena (1)
-
iron sulfides (1)
-
pyrrhotite (1)
-
realgar (1)
-
troilite (1)
-
-
tellurides
-
altaite (1)
-
-
vanadates (1)
-
-
Primary terms
-
Africa
-
East Africa
-
Ethiopia (1)
-
-
Southern Africa
-
South Africa (1)
-
-
-
Asia
-
Far East
-
Japan
-
Honshu
-
Ryoke Belt (1)
-
Tochigi Japan (1)
-
-
Sambagawa Belt (1)
-
-
-
-
Atlantic Ocean Islands
-
Azores
-
Faial Island
-
Capelinhos (1)
-
-
-
-
Canada
-
Eastern Canada
-
Ontario
-
Hastings County Ontario
-
Bancroft Ontario (1)
-
-
-
-
-
carbon (2)
-
Central America
-
Guatemala
-
Motagua Fault (1)
-
-
-
ceramic materials (1)
-
clay mineralogy (4)
-
climate change (1)
-
construction materials
-
building stone (1)
-
cement materials (1)
-
-
core (4)
-
crust (3)
-
crystal chemistry (16)
-
crystal growth (1)
-
crystal structure (86)
-
crystallography (1)
-
data processing (4)
-
deformation (4)
-
diamond deposits (1)
-
Earth (1)
-
engineering geology (1)
-
Europe
-
Alps
-
Piedmont Alps
-
Dora Maira Massif (1)
-
-
Western Alps
-
Cottian Alps
-
Dora Maira Massif (1)
-
-
-
-
Central Europe
-
Germany (1)
-
Slovakia (1)
-
-
Southern Europe
-
Italy
-
Basilicata Italy
-
Potenza Italy (1)
-
-
Latium Italy (1)
-
Piemonte Italy
-
Dora Maira Massif (1)
-
-
-
-
Western Europe
-
Cottian Alps
-
Dora Maira Massif (1)
-
-
United Kingdom
-
Great Britain
-
England
-
Cornwall England (1)
-
-
-
-
-
-
faults (1)
-
geochemistry (2)
-
geodesy (1)
-
geophysical methods (2)
-
heat flow (3)
-
hydrogen
-
deuterium (1)
-
-
igneous rocks
-
feldspathoid rocks (1)
-
plutonic rocks
-
diabase (2)
-
diorites (1)
-
gabbros
-
norite (1)
-
-
granites (3)
-
ultramafics
-
peridotites
-
dunite (1)
-
-
-
-
volcanic rocks
-
andesites (1)
-
basalts (2)
-
glasses (1)
-
pyroclastics (1)
-
rhyolites (1)
-
-
-
inclusions (3)
-
Invertebrata
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca
-
Bivalvia (1)
-
-
-
isostasy (1)
-
isotopes
-
radioactive isotopes
-
Cs-137 (1)
-
-
stable isotopes
-
deuterium (1)
-
Fe-56/Fe-54 (1)
-
O-18/O-16 (2)
-
-
-
magmas (3)
-
mantle (20)
-
Mesozoic
-
Cretaceous
-
Middle Cretaceous (1)
-
-
-
metal ores
-
copper ores (1)
-
-
metals
-
alkali metals
-
cesium
-
Cs-137 (1)
-
-
lithium (1)
-
potassium (5)
-
rubidium (2)
-
sodium (3)
-
-
alkaline earth metals
-
barium (2)
-
beryllium (1)
-
calcium (3)
-
magnesium (3)
-
strontium (2)
-
-
aluminum (1)
-
arsenic (1)
-
chromium (1)
-
cobalt (2)
-
iron
-
Fe-56/Fe-54 (1)
-
ferric iron (2)
-
ferrous iron (1)
-
-
lead (1)
-
manganese (1)
-
nickel (2)
-
rare earths
-
lutetium (1)
-
-
tin (1)
-
titanium (1)
-
zinc (3)
-
-
metamorphic rocks
-
gneisses (1)
-
marbles (4)
-
quartzites (3)
-
slates (1)
-
-
metamorphism (1)
-
mineralogy (2)
-
minerals (9)
-
North America
-
North American Cordillera (1)
-
-
Oceania
-
Polynesia
-
Tonga (1)
-
-
-
oxygen
-
O-18/O-16 (2)
-
-
paleoclimatology (1)
-
petroleum (1)
-
petrology (1)
-
phase equilibria (15)
-
plate tectonics (5)
-
pollution (1)
-
Precambrian
-
Adirondack Anorthosite (1)
-
-
rock mechanics (1)
-
sea-floor spreading (1)
-
sea-level changes (1)
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
limestone (2)
-
-
chemically precipitated rocks
-
chert (1)
-
evaporites (1)
-
-
clastic rocks
-
sandstone (3)
-
shale (1)
-
-
-
sediments
-
clastic sediments
-
clay (2)
-
-
-
silicon (1)
-
spectroscopy (1)
-
sulfur (1)
-
tectonics (1)
-
United States
-
Arizona
-
Mohave County Arizona (1)
-
-
California
-
Santa Cruz County California (1)
-
-
Maryland
-
Montgomery County Maryland (1)
-
-
New York
-
Adirondack Mountains (1)
-
-
Oregon
-
Lake County Oregon (1)
-
-
-
waste disposal (3)
-
weathering (1)
-
X-ray analysis (3)
-
-
sedimentary rocks
-
pozzolan (1)
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
limestone (2)
-
-
chemically precipitated rocks
-
chert (1)
-
evaporites (1)
-
-
clastic rocks
-
sandstone (3)
-
shale (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
clay (2)
-
-
-
thermal expansion
Phase Transformations in Feldspar Group Minerals with Paracelsian Topology under High Temperature and High Pressure
Thermoelastic parameters of Mg-sursassite and its relevance as a water carrier in subducting slabs
Thermal expansion of minerals in the amphibole supergroup
Dense melt residues drive mid-ocean-ridge “hotspots”
ABSTRACT The geodynamic origin of melting anomalies found at the surface, often referred to as “hotspots,” is classically attributed to a mantle plume process. The distribution of hotspots along mid-ocean-ridge spreading systems around the globe, however, questions the universal validity of this concept. Here, the preferential association of hotspots with slow- to intermediate-spreading centers and not fast-spreading centers, an observation contrary to the expected effect of ridge suction forces on upwelling mantle plumes, is explained by a new mechanism for producing melting anomalies at shallow (<2.3 GPa) depths. By combining the effects of both chemical and thermal density changes during partial melting of the mantle (using appropriate latent heat and depth-dependent thermal expansivity parameters), we find that mantle residues experience an overall instantaneous increase in density when melting occurs at <2.3 GPa. This controversial finding is due to thermal contraction of material during melting, which outweighs the chemical buoyancy due to melting at shallow pressures (where thermal expansivities are highest). These dense mantle residues are likely to locally sink beneath spreading centers if ridge suction forces are modest, thus driving an increase in the flow of fertile mantle through the melting window and increasing magmatic production. This leads us to question our understanding of sub–spreading center dynamics, where we now suggest a portion of locally inverted mantle flow results in hotspots. Such inverted flow presents an alternative mechanism to upwelling hot mantle plumes for the generation of excess melt at near-ridge hotspots, i.e., dense downwelling of mantle residue locally increasing the flow of fertile mantle through the melting window. Near-ridge hotspots, therefore, may not require the elevated temperatures commonly invoked to account for excess melting. The proposed mechanism also satisfies counterintuitive observations of ridge-bound hotspots at slow- to intermediate-spreading centers, yet not at fast-spreading centers, where large dynamic ridge suction forces likely overwhelm density-driven downwelling. The lack of observations of such downwelling in numerical modeling studies to date reflects the generally high chemical depletion buoyancy and/or low thermal expansivity parameter values employed in simulations, which we find to be unrepresentative for melting at <2.3 GPa. We therefore invite future studies to review the values used for parameters affecting density changes during melting (e.g., depletion buoyancy, latent heat of melting, specific heat capacity, thermal expansivity), which quite literally have the potential to turn our understanding of mantle dynamics upside down.
Ab initio study of structural, elastic and thermodynamic properties of Fe 3 S at high pressure: Implications for planetary cores
Complex hydrogen bonding and thermal behaviour over a wide temperature range of kainite KMg(SO 4 )Cl⋅2.75H 2 O
Thermoelastic properties of zircon: Implications for geothermobarometry
Precise determination of the effect of temperature on the density of solid and liquid iron, nickel, and tin
Phase diagram and thermal expansion of orthopyroxene-, clinopyroxene-, and ilmenite-structured MgGeO 3
Thermal expansion of minerals in the pyroxene system and examination of various thermal expansion models
P-V-T equation of state of hydrous phase A up to 10.5 GPa
Towards a detailed comprehension of the inertisation processes of amphibole asbestos: in situ high-temperature behaviour of fibrous tremolite
A structural study of size-dependent lattice variation: In situ X-ray diffraction of the growth of goethite nanoparticles from 2-line ferrihydrite
Abstract The International Geoscience Programme Project IGCP 609 addressed correlation, causes and consequences of short-term sea-level fluctuations during the Cretaceous. Processes causing several ka to several Ma (third- to fourth-order) sea-level oscillations during the Cretaceous are so far poorly understood. IGCP 609 proved the existence of sea-level cycles during potential ice sheet-free greenhouse to hothouse climate phases. These sea-level fluctuations were most probably controlled by aquifer-eustasy that is altering land-water storage owing to groundwater aquifer charge and discharge. The project investigated Cretaceous sea-level cycles in detail in order to differentiate and quantify both short- and long-term records based on orbital cyclicity. High-resolution sea-level records were correlated to the geological timescale resulting in a hierarchy of sea-level cycles in the longer Milankovitch band, especially in the 100 ka, 405 ka, 1.2 Ma and 2.4 Ma range. The relation of sea-level highs and lows to palaeoclimate events, palaeoenvironments and biota was also investigated using multiproxy studies. For a hothouse Earth such as the mid-Cretaceous, humid–arid climate cycles controlling groundwater-related sea-level change were evidenced by stable isotope data, correlation to continental lake-level records and humid–arid weathering cycles.