- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Canada
-
Western Canada
-
British Columbia (1)
-
Canadian Cordillera (1)
-
-
-
Cascade Range (10)
-
North America
-
North American Cordillera
-
Canadian Cordillera (1)
-
-
Straight Creek Fault (1)
-
-
United States
-
Washington
-
Chelan County Washington (4)
-
King County Washington (2)
-
Kittitas County Washington (5)
-
Snohomish County Washington (1)
-
-
-
-
commodities
-
energy sources (1)
-
-
fossils
-
Invertebrata
-
Protista
-
Radiolaria (1)
-
-
-
microfossils (1)
-
-
geochronology methods
-
fission-track dating (2)
-
K/Ar (1)
-
paleomagnetism (1)
-
U/Pb (2)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Challis Volcanics (1)
-
Neogene
-
Miocene
-
Columbia River Basalt Group (1)
-
-
-
Paleogene
-
Eocene
-
Chuckanut Formation (1)
-
Chumstick Formation (6)
-
lower Eocene (1)
-
middle Eocene (2)
-
Swauk Formation (11)
-
-
Oligocene
-
lower Oligocene (1)
-
-
-
-
-
Mesozoic
-
Cretaceous (2)
-
Jurassic
-
Lower Jurassic (1)
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
basalts
-
mid-ocean ridge basalts (1)
-
-
pyroclastics
-
tuff (1)
-
-
-
-
ophiolite (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
-
ophiolite (1)
-
-
minerals
-
minerals (1)
-
phosphates
-
apatite (1)
-
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (3)
-
-
-
-
-
-
Primary terms
-
absolute age (3)
-
Canada
-
Western Canada
-
British Columbia (1)
-
Canadian Cordillera (1)
-
-
-
Cenozoic
-
Tertiary
-
Challis Volcanics (1)
-
Neogene
-
Miocene
-
Columbia River Basalt Group (1)
-
-
-
Paleogene
-
Eocene
-
Chuckanut Formation (1)
-
Chumstick Formation (6)
-
lower Eocene (1)
-
middle Eocene (2)
-
Swauk Formation (11)
-
-
Oligocene
-
lower Oligocene (1)
-
-
-
-
-
crust (2)
-
deformation (1)
-
energy sources (1)
-
faults (7)
-
folds (5)
-
geochemistry (1)
-
geochronology (2)
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
basalts
-
mid-ocean ridge basalts (1)
-
-
pyroclastics
-
tuff (1)
-
-
-
-
intrusions (3)
-
Invertebrata
-
Protista
-
Radiolaria (1)
-
-
-
Mesozoic
-
Cretaceous (2)
-
Jurassic
-
Lower Jurassic (1)
-
-
-
metamorphic rocks
-
gneisses (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
-
metamorphism (1)
-
minerals (1)
-
North America
-
North American Cordillera
-
Canadian Cordillera (1)
-
-
Straight Creek Fault (1)
-
-
paleogeography (2)
-
paleomagnetism (1)
-
petrology (1)
-
plate tectonics (3)
-
sea-floor spreading (1)
-
sedimentary rocks
-
clastic rocks
-
arkose (1)
-
-
-
sedimentation (2)
-
stratigraphy (2)
-
structural analysis (1)
-
structural geology (2)
-
tectonics (3)
-
United States
-
Washington
-
Chelan County Washington (4)
-
King County Washington (2)
-
Kittitas County Washington (5)
-
Snohomish County Washington (1)
-
-
-
-
rock formations
-
Skagit Gneiss (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
arkose (1)
-
-
-
Swauk Formation
High-resolution temporal and stratigraphic record of Siletzia’s accretion and triple junction migration from nonmarine sedimentary basins in central and western Washington
Tertiary stratigraphy and structure of the eastern flank of the Cascade Range, Washington
Abstract A ruling hypothesis for the central Cascade Range in Washington is that the Eocene arkosic formations, which are kilometers thick, were deposited in local grabens, such as the Chumstick Formation in the putative Chiwaukum graben. However, the formations are regional in extent and are preserved in less extensive northwesttrending synclines. The Chumstick Formation in the Peshastin syncline is a more proximal equivalent of the Roslyn Formation, which is preserved in the Kittitas Valley syncline 25 km to the southwest. The Chiwaukum structural low is partially bounded on the southwest by the Leavenworth fault zone, which consists of northwesterly striking, northeasterly verging reverse faults (with associated northwest-striking folds). The reverse faults and the hinges of the folds are cut by N-S, dextral strike-slip faults, which also partially bound the Chiwaukum structural low. Conglomeratic units in the Chumstick Formation are not proximal to either set of bounding faults. The Leavenworth fault occurs on the steeper northeastern limb of a northwesterly trending, basement-cored anticline. The Eagle Creek and Ainsley Canyon anticlines also have reverse faults on their steeper northeastern limbs. In the Puget Lowland, the Seattle reverse fault is in a similar anticline. The regional distribution of the Eocene formations and uplift of the Cascade Range are caused by folding of the Miocene Columbia River Basalt Group since 4 Ma. The remnant of a 4 Ma andesite on Natapoc Mountain shows that the present low topography of the Chiwaukum structural low is erosional and young.
The Chiwaukum Structural Low: Cenozoic shortening of the central Cascade Range, Washington State, USA
Abstract A prevailing hypothesis for the central Cascade Range of Washington State is that it underwent regional extension or transtension during the Eocene. This hypothesis is based on the idea that kilometers-thick, clastic, Eocene formations were deposited syntectonically in local basins. Our mapping and structural analysis indicate that these formations are preserved in fault-bounded, regional synclines, not in separate depositional basins. Thus, the type area for the hypothesis, the so-called Chiwaukum graben, is here renamed the Chiwaukum Structural Low. The Eocene arkosic Chum-stick Formation, which was thought to have been syntectonically deposited in the graben, is the proximal equivalent of the Roslyn Formation 25 km southwest of the graben. Because the name “Roslyn Formation” has precedence, the name “Chumstick Formation” should be abandoned. Additionally, several areas previously mapped as Chumstick Formation in the Chiwaukum Structural Low probably are parts of the older Swauk Formation and younger Wenatchee Formation. The southwestern boundary of the Chiwaukum Structural Low includes the Leav-enworth fault zone, which consists of postdepositional, northwest-striking reverse faults with adjacent northwest-striking folds. The reverse faults place the regionally extensive early-Eocene, arkosic Swauk Formation over the mid-Eocene, arkosic Chumstick Formation. A diamictite, which previously was placed in the Chumstick Formation and inferred to have been syntectonically derived from the Leavenworth fault zone, is part of the older Swauk Formation. We mapped a 0.6–1-km-thick conglomerate-bearing sandstone as a robust marker unit in the Chumstick Formation; instead of being spatially related to the bounding faults, this unit has a >30 km strike length around the limbs of folds in the structural low. The northwest-striking reverse faults and fold hinges of the structural low are cut by north-striking strike-slip faults, which likely are late Eocene to Oligocene; these north-south faults partially bound the structural low. The Eocene folds and faults were reactivated by deformation of the Miocene Columbia River Basalt Group; this younger folding largely defines the regional map pattern, including the structural low. A model to account for the above characteristics is that all of the Eocene formations, not just the Roslyn Formation, are kilometers thick and are remnants of regional unconformity-bounded sequences that were deposited on the Eocene margin of this part of North America. Their present distribution is governed by younger faults, folds, and erosion. Thus, the Eocene to Recent history of the central Cascade region is characterized not by crustal extension, but by episodes of folding (with related reverse faults) and strike-slip faulting.
Linking deep and shallow crustal processes in an exhumed continental arc, North Cascades, Washington
Abstract The magmatic arc represented by the crystalline core of the North Cascades (Cascades core) reached a crustal thickness of >55 km in the mid-Cretaceous. Eocene collapse of the arc was marked by migmatization, magmatism, and exhumation of deep-crustal (9-12 kb) rocks at the same time as subsidence and rapid deposition in nearby transtensional nonmarine basins. The largest region of deeply exhumed rocks, the migmatitic Skagit Gneiss Complex, consists primarily of leucocratic, biotite tonalite orthogneiss intruded between ca. 76-59 Ma and 50-45 Ma. Well-layered biotite gneiss is also widespread. U-Pb (isotope dilution-thermal ionization mass spectrometry) dating of zircon and monazite from trondhjemitic leucosome and biotite gneiss mesosome indicates that metamorphism and melt generation/crystallization occurred at least intermittently from ca. 71 to 47 Ma, and the youngest U-Pb dates overlap Ar/Ar (biotite, muscovite) dates, compatible with rapid cooling. Mesoscopic to map-scale, gently plunging, upright folds have hinge lines subparallel to orogen-parallel (NW-SE) lineations in the Skagit Gneiss Complex, and are as young as 48 Ma. Eocene top-to-northwest flow occurred in parts of the complex. The gently to moderately dipping foliation, subhorizontal lineation, and constrictional domains are compatible with ductile transtension linked to dextral-normal displacement on the Ross Lake fault system, the northeastern boundary of the Cascades core. On the south flank of the core, sediments were deposited in part at ca. 51 Ma in the Swauk basin and shortly afterward folded, and then intruded by 47 Ma Teanaway basaltic dikes. Extension taken up by these dikes ranges from ~10% to 43%. Extension directions from Teanaway and other Eocene dikes are arc-parallel to arc-oblique. The shallow-crustal extension direction is counterclockwise (mostly 10°-30°) to the ductile flow direction, implying decoupling of brittle and ductile crust; however, some coupling is supported by the temporal coincidence between basin formation and partial melting and ductile flow, and the upright folding of both the Skagit Gneiss Complex and Swauk basin. Arc-oblique to arc-parallel flow probably resulted in part from dextral shear along the plate margin, along-strike gradients in crustal thickness, and thermally controlled rheology.
The polygenetic Ingalls ophiolite complex in the central Cascades, Washington, is one of several Middle to Late Jurassic ophiolites of the North American Cordillera. It consists primarily of mantle tectonites. High-temperature mylonitic peridotite, overprinted by serpentinite mélange (Navaho Divide fault zone), separates harzburgite and dunite in the south from lherzolite in the north. Crustal units of the ophiolite occur as steeply dipping, kilometer-scale fault blocks within the Navaho Divide fault zone. These units are the Iron Mountain, Esmeralda Peaks, and Ingalls sedimentary rocks. Volcanic rocks of the Iron Mountain unit have transitional within-plate–enriched mid-ocean-ridge basalt affinities, and a rhyolite yields a U-Pb zircon age of ca. 192 Ma. Minor sedimentary rocks include local oolitic limestones and cherts that contain Lower Jurassic (Pliensbachian) Radiolaria. This unit probably formed as a seamount within close proximity to a spreading ridge. The Esmeralda Peaks unit forms the crustal section of the ophiolite, and it consists of gabbro, diabase, basalt, lesser felsic volcanics, and minor sedimentary rocks. U-Pb zircon indicates that the age of this unit is ca. 161 Ma. The Esmeralda Peaks unit has transitional island-arc–mid-ocean ridge basalt and minor boninitic affinities. A preferred interpretation for this unit is that it formed initially by forearc rifting that evolved into back-arc spreading, and it was subsequently deformed by a fracture zone. The Iron Mountain unit is the rifted basement of the Esmeralda Peaks unit, indicating that the Ingalls ophiolite complex is polygenetic. Ingalls sedimentary rocks consist primarily of argillite with minor graywacke, conglomerate, chert, and ophiolite-derived breccias and olistoliths. Radiolaria from chert give lower Oxfordian ages. The Ingalls ophiolite complex is similar in age and geochemistry to the Josephine ophiolite and its related rift-edge facies and to the Coast Range ophiolite of California and Oregon. The Ingalls and Josephine ophiolites are polygenetic, while the Coast Range ophiolite is not, and sedimentary rocks (Galice Formation) that sit on the Josephine and its rift-edge facies have the same Radiolaria fauna as Ingalls sedimentary rocks. Therefore, we correlate the Ingalls ophiolite complex with the Josephine ophiolite of the Klamath Mountains. Taking known Cretaceous and younger strike-slip faulting into account, this correlation implies that the Josephine ophiolite either continued northward ~440 km—thus increasing the known length of the Josephine basin—or that the Ingalls ophiolite was translated northward ~440 km along the continental margin.
Regional Tertiary sequence stratigraphy and structure on the eastern flank of the central Cascade Range, Washington
Abstract Eocene sedimentary and volcanic rocks on the eastern flank of the Cascade Range consist of five regional, unconformity-bounded formations of the Challis synthem. These formations define a series of northwesterly striking folds. Five anticlines are 9 to 28 km apart, have pre-Tertiary crystalline rocks in their cores, high-angle reverse faults on their steeper northeastern limbs, and pass down-plunge into more gentle folds in the Neogene Columbia River Basalt Group (CRBG). Such northwesterly trending folds extend from east of the Columbia River across the Cascade Range to the Puget Lowland. The Chiwaukum graben and Swauk basin, which heretofore were thought to be local, extensional, depositional basins, are, instead, the major northwesterly trending synclines in this series of folds. The Eocene formations were preserved, not deposited, in these synclines. Dextral, N-S faults cut the reverse faults and the pre-CRBG portion of some of the folds. The post-CRBG folds control the regional distribution of the Eocene formations. The Cascade Range is a southerly plunging, post-CRBG anticline. Clasts in the Thorp Gravel indicate that this anticline began to rise ca. 4 Ma. The anticline has an amplitude of ∼3.5 km, and it causes the plunges of the northwesterly striking post-CRBG folds. The northerly and northwesterly post-CRBG folds form a regional interference pattern, or “egg-crate,” that dominates the present topography of Washington State.