- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Maghreb (1)
-
Morocco
-
Rif (1)
-
-
-
-
Europe
-
Carpathians
-
Western Carpathians (1)
-
-
Pieniny Klippen Belt (1)
-
Southern Europe
-
Iberian Peninsula
-
Portugal (1)
-
Spain
-
Andalusia Spain
-
Cadiz Spain (2)
-
Granada Spain (1)
-
Malaga Spain (3)
-
-
Betic Cordillera (11)
-
Betic Zone (3)
-
Murcia Spain
-
Caravaca Spain (1)
-
-
Subbetic Zone (22)
-
Valencia region
-
Alicante Spain (2)
-
-
-
-
-
Western Europe
-
France (1)
-
-
-
Mediterranean Sea
-
West Mediterranean (1)
-
-
Strait of Gibraltar (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (2)
-
-
isotope ratios (2)
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
O-18/O-16 (1)
-
-
-
metals
-
rare earths (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
fossils
-
burrows (1)
-
ichnofossils
-
Chondrites ichnofossils (1)
-
Nereites (1)
-
Palaeophycus (1)
-
Planolites (1)
-
Rhizocorallium (1)
-
Teichichnus (1)
-
Thalassinoides (1)
-
Zoophycos (1)
-
-
Invertebrata
-
Brachiopoda
-
Articulata
-
Rhynchonellida (1)
-
-
-
Mollusca
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
-
-
-
Protista
-
Foraminifera (4)
-
Tintinnidae
-
Calpionellidae (1)
-
-
-
-
microfossils (6)
-
Plantae
-
algae
-
Microcodium (1)
-
nannofossils (2)
-
-
-
-
geochronology methods
-
paleomagnetism (2)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene
-
Subboreal (1)
-
-
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene
-
Burdigalian (1)
-
-
middle Miocene
-
Langhian (1)
-
Serravallian (1)
-
-
upper Miocene
-
Tortonian (1)
-
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene (1)
-
-
Paleocene
-
lower Paleocene
-
Danian (1)
-
K-T boundary (1)
-
-
middle Paleocene
-
Selandian (1)
-
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Carixian (1)
-
Pliensbachian (4)
-
Sinemurian (1)
-
Toarcian
-
lower Toarcian (1)
-
-
-
Middle Jurassic
-
Bathonian (1)
-
-
-
Triassic
-
Upper Triassic (1)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
metaigneous rocks
-
metadiabase (1)
-
-
-
-
minerals
-
minerals (1)
-
phosphates (1)
-
silicates
-
orthosilicates
-
sorosilicates
-
pumpellyite group
-
pumpellyite (1)
-
-
-
-
sheet silicates
-
chlorite group
-
chlorite (1)
-
-
clay minerals
-
kaolinite (1)
-
smectite (2)
-
-
illite (1)
-
mica group
-
glauconite (1)
-
-
-
-
-
Primary terms
-
Africa
-
North Africa
-
Maghreb (1)
-
Morocco
-
Rif (1)
-
-
-
-
biogeography (1)
-
carbon
-
C-13/C-12 (2)
-
-
Cenozoic
-
Quaternary
-
Holocene
-
Subboreal (1)
-
-
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene
-
Burdigalian (1)
-
-
middle Miocene
-
Langhian (1)
-
Serravallian (1)
-
-
upper Miocene
-
Tortonian (1)
-
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene (1)
-
-
Paleocene
-
lower Paleocene
-
Danian (1)
-
K-T boundary (1)
-
-
middle Paleocene
-
Selandian (1)
-
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (1)
-
-
-
-
clay mineralogy (3)
-
climate change (1)
-
deformation (2)
-
diagenesis (1)
-
Europe
-
Carpathians
-
Western Carpathians (1)
-
-
Pieniny Klippen Belt (1)
-
Southern Europe
-
Iberian Peninsula
-
Portugal (1)
-
Spain
-
Andalusia Spain
-
Cadiz Spain (2)
-
Granada Spain (1)
-
Malaga Spain (3)
-
-
Betic Cordillera (11)
-
Betic Zone (3)
-
Murcia Spain
-
Caravaca Spain (1)
-
-
Subbetic Zone (22)
-
Valencia region
-
Alicante Spain (2)
-
-
-
-
-
Western Europe
-
France (1)
-
-
-
faults (4)
-
folds (2)
-
geochemistry (3)
-
ichnofossils
-
Chondrites ichnofossils (1)
-
Nereites (1)
-
Palaeophycus (1)
-
Planolites (1)
-
Rhizocorallium (1)
-
Teichichnus (1)
-
Thalassinoides (1)
-
Zoophycos (1)
-
-
Invertebrata
-
Brachiopoda
-
Articulata
-
Rhynchonellida (1)
-
-
-
Mollusca
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
-
-
-
Protista
-
Foraminifera (4)
-
Tintinnidae
-
Calpionellidae (1)
-
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
O-18/O-16 (1)
-
-
-
Mediterranean Sea
-
West Mediterranean (1)
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Carixian (1)
-
Pliensbachian (4)
-
Sinemurian (1)
-
Toarcian
-
lower Toarcian (1)
-
-
-
Middle Jurassic
-
Bathonian (1)
-
-
-
Triassic
-
Upper Triassic (1)
-
-
-
metals
-
rare earths (1)
-
-
metamorphic rocks
-
metaigneous rocks
-
metadiabase (1)
-
-
-
metamorphism (1)
-
minerals (1)
-
orogeny (1)
-
oxygen
-
O-18/O-16 (1)
-
-
paleoclimatology (1)
-
paleoecology (4)
-
paleogeography (5)
-
paleomagnetism (2)
-
paleontology (1)
-
Plantae
-
algae
-
Microcodium (1)
-
nannofossils (2)
-
-
-
plate tectonics (1)
-
sea-level changes (1)
-
sedimentary petrology (1)
-
sedimentary rocks
-
carbonate rocks
-
grainstone (1)
-
limestone
-
calcarenite (1)
-
-
-
clastic rocks
-
marl (2)
-
-
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
-
soft sediment deformation
-
olistostromes (1)
-
-
-
sedimentation (5)
-
sediments (2)
-
spectroscopy (1)
-
stratigraphy (2)
-
structural geology (1)
-
tectonics
-
neotectonics (1)
-
-
-
sedimentary rocks
-
flysch (1)
-
sedimentary rocks
-
carbonate rocks
-
grainstone (1)
-
limestone
-
calcarenite (1)
-
-
-
clastic rocks
-
marl (2)
-
-
-
-
sedimentary structures
-
burrows (1)
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
-
soft sediment deformation
-
olistostromes (1)
-
-
-
-
sediments
-
sediments (2)
-
-
soils
-
paleosols (1)
-
Subbetic Zone
The last representatives of the Superfamily Wellerelloidea (Brachiopoda, Rhynchonellida) in the westernmost Tethys (Iberian paleomargins) prior to their demise in the early Toarcian Mass Extinction Event
Abstract Micritic sediments containing dark, discrete, organic-rich burrows, situated in a light grey background carbonate mud, were deposited over a broad geographical area in deep-shelf, bathyal and basinal environments in the western margin of the Tethys Ocean during the Early and Middle Jurassic. These hemipelagic deposits represent a distinct depositional regime marked by low-energy, soft-bottom and only locally dysoxic environments. Still, it is unclear whether the trace-fossil assemblages occurring in these deposits pertain to a network of several community types – the ichnotaxa differing from basin to basin – or to a single community of environmentally broad-ranging, burrow-producing species. Lower Jurassic trace-fossil assemblages are found in the Western Carpathians and in the Subbetic, Betic Cordillera: that is, in basins separated by more than 2000 km in their original palaeogeographical areas. The stereotypical Chondrites and Zoophycos trace-fossil assemblages that occur in the analysed deposits share two ichnogenera of distinctive morphology ( Lamellaeichnus and Teichichnus ). Agglutinated foraminifera Bathysiphon occurs together with the described trace-fossil assemblage and determines the epibenthic palaeoenvironmental conditions. In the Western Carpathians, a Lamellaeichnus -dominated assemblage alternates with a Zoophycos -dominated assemblage in small, metre-scale cycles in the upper Pliensbachian, and the proportion of the Zoophycos assemblage increases stratigraphically upwards, probably owing to reduced basin ventilation during the early Toarcian. Within the southern Iberian palaeomargin, represented by the Betic Cordillera, Zoophycos is scarce in the facies.
Abstract Detailed assessment of high-resolution elemental and isotopic geochemical datasets collected from the marl–limestone alternations cropping out at La Cerradura (Subbetic domain of the Betic Cordillera, Spain) and chrono- and chemostratigraphic correlation with the reference Mochras borehole (Cardigan Bay Basin, UK) unveiled valuable new insights into understanding of late Pliensbachian–early Toarcian palaeoenvironmental dynamics in a key geographical area between the northern European seaway and the Tethys Ocean. This study shows that deposition in the study area took place under dominantly oxic water column conditions, indicated, for example, by the generalized lack of enrichment in organic matter and redox metals typically associated with anoxia and euxinia. Carbon isotope stratigraphy (δ 13 C TOC ) allowed recognition of the spinatum (= emaciatum in the Submediterranean Province), Pliensbachian–Toarcian, and early Toarcian Oceanic Anoxic Event negative carbon isotopic excursions and the late Pliensbachian positive carbon isotopic excursion. It is here suggested that the observed periodic changes in lithology and sedimentary geochemistry occur at orbital frequencies (i.e. long and short eccentricity and, tentatively, precession), hinting at an astronomical control of the local–regional climate and environment during the Pliensbachian and Toarcian in the mid- to low-latitude South Iberian palaeomargin area.
Cisnerospira (Brachiopoda, Spiriferinida), an atypical Early Jurassic spire bearer from the Subbetic Zone (SE Spain) and its significance
EVALUATING TAPHONOMIC BIAS IN A STORM-DISTURBED CARBONATE PLATFORM: EFFECTS OF COMPOSITIONAL AND ENVIRONMENTAL FACTORS IN LOWER JURASSIC BRACHIOPOD ACCUMULATIONS (EASTERN SUBBETIC BASIN, SPAIN)
Crescent-like large-scale structures in the external zones of the western Gibraltar Arc (Betic–Rif orogenic wedge)
What happens when the ocean is overheated? The foraminiferal response across the Paleocene–Eocene Thermal Maximum at the Alamedilla section (Spain)
The Majalcorón Formation (Paleocene) is an unusual lithostratigraphic unit mainly made up of calcarenites with reworked Microcodium . Analysis of this unit from different localities of the Subbetic (southern Spain) shows that the formation is interbedded in pelagic sedimentary rocks. Calcareous nannofossils in the latter confirm that deposition of the Majalcorón Formation began in the early Danian and finished in the latest Danian–early Selandian. The reworked Microcodium calcarenites are grainstones mainly constituting disaggregated Microcodium prisms and sparite cement. Secondarily, they contain quartz grains, glauconite, mud clasts, benthonic and planktonic foraminifera, coal fragments, and plant remains. In some beds, hummocky cross-stratification and mound-shaped structures appear. The reworked Microcodium calcarenites are derived from the erosion of calcareous paleosols in source areas located to the north. A eustatic regressive-transgressive-regressive succession at the Cretaceous-Tertiary boundary and in the early Paleocene is responsible for the beginning of the Microcodium paleosol development. Sedimentation of the calcarenites took place in a shallow marine ramp after erosion of the paleosols, and ended with the development of paleokarstic features on the top of the formation. This interpretation of the Majalcorón Formation as a shallow-marine deposit is important to the understanding of the paleogeography and depositional paleobathymetry of the adjacent pelagic facies during the Late Cretaceous and Paleogene. Se estudia una unidad estratigráfica peculiar, la Formación Majalcorón del Paleoceno en el Subbético, compuesta mayoritariamente por calcarenitas con Microcodium retrabajado. Esta unidad se encuentra intercalada entre rocas sedimentarias pelágicas con nanoplancton calcáreo que ha permitido establecer que su depósito comenzó en el Daniense inferiory finalizó en el Daniense terminal–Selandiense inferior. Lascalcarenitas de Microcodium resedimentado son grainstones compuestos mayoritariamente por prismas disgregados de Microcodium y cemento esparítico. Además hay granos de cuarzo, glauconita, intraclastos micríticos, foraminíferos planctónicos y bentónicos, y fragmentos de plantas. En algunos estratos aparece estratificación cruzada de tipo hummocky y estructuras en montículo. Las calcarenitas de Microcodium proceden de la erosión de paleosuelos calcáreos. Se propone que las áreas fuente que proporcionaron los importantes volúmenes de Microcodium se localizaban al norte, en el Subbético Externo. Cambios eustáticos del nivel del mar en el límite Cretácico-Terciario y en el Paleoceno inferior, en una sucesión regresiva-transgresiva-regresiva fueron los principales responsables del comienzo del desarrollo de los paleosuelos con Microcodium , de la sedimentación de las calcarenitas después de la erosión de los paleosuelos y del final de su depósito con el desarollo de rasgos paleokársticos en el techo de la formación. La consideración de la Formación Majalcorón como un depósito marino somero es importante para interpretar la paleogeografía y paleobatimetría de las facies pelágicas adyacentes durante el Cretácico Superior y Paleógeno.
Clay mineralogy of the Tertiary sediments in the Internal Subbetic of Málaga Province, S Spain: implications for geodynamic evolution
Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain)
Glauconite and phosphate peloids in Mesozoic carbonate sediments (eastern Subbetic Zone, Betic Cordilleras, SE Spain)
Extensional Jurassic tectonism of an eastern Subbetic section (southern Spain)
Sedimentation answers to local tectonic events in a pelagic swell (Subbetic Zone, Province of Murcia, Spain)
Pumpellyite associated with actinolite, epidote, prehnite, chlorite, albite, white mica, titanite, smectite, and calcite is found in tholeiitic dolerites of Late Triassic (Liassic?) age, where it fills veinlets, replaces primary plagioclase and orthopyroxene, and appears in the groundmass. The dolerites, metamorphosed during the Eo-Alpine event, crop out as tectonic blocks several hundred meters in size, covering an approximate area of 0.1 km 2 next to the town of Archidona, Málaga province, southern Spain. A 4.0-mm-thick vein filled with compact bundles of needlelike pumpellyite was selected for analysis. Very minor amounts of calcite and smectite appear as a thin wall coating in this vein. Separates of pure pumpellyite were analyzed by X-ray diffraction, transmission electron microscopy–analytical electron microscopy, inductively coupled plasma, and electron probe microanalysis (XRD, TEM-AEM, ICP, and EPMA). The chemical analyses show a close agreement between the ICP analysis and the mean value of 60 probe measurements. The average of six semiquantitative AEM analyses plot close to the points above. The X Fe 3+ values (= 100Fe 3+ /Fe 3+ + Al tot ) are 20.7% for the EPMA mean (all Fe as Fe 3+ ) and 18% for the ICP analysis (with Fe 3+ and Fe 2+ analyzed separately). Cation distribution in the Z, Y, X, and W positions agree closely with the ideal stoichiometry (6, 4, 2, and 4, respectively), whereas the cation totals are 15.91 for the EPMA mean and 15.99 for the ICP analysis. The Archidona pumpellyite is strongly impoverished in rare earth elements (REE) as a whole and shows a smooth U-shaped REE pattern. A maximum enrichment of about four to five times chondrites is shown by the heaviest rare earth elements Yb and Lu, respectively. The unit-cell parameters of the pumpellyite were determined as follows: a = 8.814 ± 0.002, b = 5.925 ± 0.001, c = 19.125 ± 0.003 A, V = 990.307 ± 0.228 A 3 , and β = 97° ± 0.8′. Pumpellyite needles in the vein were also examined by selected-area electron diffraction (SAED) and TEM imaging. From [010] zone axis electron diffraction patterns with no streaks along c * and images showing only some twin faults parallel to (001), it was concluded that pumpellyite was not significantly intergrown with epidote, lawsonite or sursassite. This absence of microdefects indicates a remarkable structural homogeneity of this pumpellyite sample.