- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Tunisia
-
El Kef Tunisia (1)
-
-
-
Southern Africa
-
South Africa (1)
-
-
-
Antarctica
-
East Antarctica (1)
-
-
Arctic Ocean
-
Lomonosov Ridge (1)
-
Norwegian Sea
-
Voring Plateau (1)
-
-
-
Asia
-
Popigay Structure (1)
-
-
Atlantic Ocean
-
Equatorial Atlantic (2)
-
North Atlantic
-
Bay of Biscay (1)
-
Blake Plateau
-
Blake Nose (2)
-
-
Gulf of Mexico (1)
-
Labrador Sea (1)
-
Northeast Atlantic
-
Iberian abyssal plain (2)
-
-
Northwest Atlantic
-
Demerara Rise (1)
-
-
Rockall Plateau (1)
-
-
South Atlantic
-
Angola Basin (1)
-
Cape Basin (1)
-
Falkland Plateau (1)
-
Southeast Atlantic (1)
-
Southwest Atlantic (1)
-
Walvis Ridge (3)
-
-
West Atlantic (1)
-
-
Australasia
-
New Zealand (2)
-
-
Broken Ridge (1)
-
Chicxulub Crater (1)
-
Commonwealth of Independent States
-
Russian Federation
-
Popigay Structure (1)
-
-
-
Europe
-
Southern Europe
-
Italy
-
Marches Italy
-
Ancona Italy
-
Massignano Italy (2)
-
-
-
Umbria Italy
-
Perugia Italy
-
Gubbio Italy (1)
-
-
-
-
-
-
Georgia Basin (2)
-
Hudson Canyon (1)
-
Indian Ocean
-
Exmouth Plateau (3)
-
Naturaliste Plateau (1)
-
Ninetyeast Ridge (1)
-
Wombat Plateau (1)
-
-
International Ocean Discovery Program (2)
-
Kerguelen Plateau (13)
-
North Island (1)
-
ODP Site 642 (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
Southeast Pacific (1)
-
-
Equatorial Pacific (2)
-
North Pacific
-
Northeast Pacific (1)
-
Northwest Pacific
-
Emperor Seamounts (1)
-
Shatsky Rise (4)
-
-
-
South Pacific
-
Southeast Pacific (1)
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Emperor Seamounts (1)
-
Shatsky Rise (4)
-
-
Ontong Java Plateau (1)
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
-
Southern Hemisphere (1)
-
Southern Ocean
-
Weddell Sea
-
Maud Rise (36)
-
-
-
Southwest Indian Ridge (1)
-
United States
-
Atlantic Coastal Plain (2)
-
New Jersey
-
Cumberland County New Jersey (1)
-
Millville New Jersey (1)
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (8)
-
organic carbon (1)
-
-
isotope ratios (11)
-
isotopes
-
radioactive isotopes
-
Ar-40/Ar-39 (1)
-
-
stable isotopes
-
Ar-40/Ar-39 (1)
-
C-13/C-12 (8)
-
O-18/O-16 (10)
-
Si-30 (1)
-
-
-
metals
-
platinum group
-
iridium (2)
-
-
-
noble gases
-
argon
-
Ar-40/Ar-39 (1)
-
-
-
oxygen
-
O-18/O-16 (10)
-
-
silicon
-
Si-30 (1)
-
-
-
fossils
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (3)
-
-
-
-
Porifera
-
Demospongea (1)
-
Hexactinellida (1)
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (2)
-
-
-
Globigerinacea (1)
-
-
-
Radiolaria
-
Osculosida
-
Nassellina (3)
-
-
Spumellina (2)
-
-
-
-
microfossils (34)
-
palynomorphs
-
Dinoflagellata (4)
-
-
Plantae
-
algae
-
diatoms (1)
-
nannofossils (5)
-
-
-
thallophytes (2)
-
-
geochronology methods
-
K/Ar (1)
-
paleomagnetism (1)
-
Rb/Sr (1)
-
U/Th/Pb (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (4)
-
Pliocene
-
lower Pliocene (1)
-
-
-
Paleogene
-
Eocene
-
lower Eocene (3)
-
middle Eocene (1)
-
upper Eocene (5)
-
-
Oligocene
-
lower Oligocene (3)
-
-
Paleocene
-
lower Paleocene
-
Danian (1)
-
K-T boundary (3)
-
-
upper Paleocene (2)
-
-
Paleocene-Eocene Thermal Maximum (8)
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (1)
-
Coniacian (1)
-
K-T boundary (3)
-
Maestrichtian
-
lower Maestrichtian (1)
-
-
Santonian (1)
-
Senonian (2)
-
Turonian (1)
-
-
-
Jurassic (1)
-
-
-
minerals
-
silicates
-
chain silicates
-
pyroxene group
-
clinopyroxene (1)
-
-
-
framework silicates
-
silica minerals
-
coesite (1)
-
opal (2)
-
quartz (1)
-
-
-
sheet silicates
-
chlorite group
-
chlorite (1)
-
-
clay minerals
-
kaolinite (1)
-
smectite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
absolute age (1)
-
Africa
-
North Africa
-
Tunisia
-
El Kef Tunisia (1)
-
-
-
Southern Africa
-
South Africa (1)
-
-
-
Antarctica
-
East Antarctica (1)
-
-
Arctic Ocean
-
Lomonosov Ridge (1)
-
Norwegian Sea
-
Voring Plateau (1)
-
-
-
Asia
-
Popigay Structure (1)
-
-
Atlantic Ocean
-
Equatorial Atlantic (2)
-
North Atlantic
-
Bay of Biscay (1)
-
Blake Plateau
-
Blake Nose (2)
-
-
Gulf of Mexico (1)
-
Labrador Sea (1)
-
Northeast Atlantic
-
Iberian abyssal plain (2)
-
-
Northwest Atlantic
-
Demerara Rise (1)
-
-
Rockall Plateau (1)
-
-
South Atlantic
-
Angola Basin (1)
-
Cape Basin (1)
-
Falkland Plateau (1)
-
Southeast Atlantic (1)
-
Southwest Atlantic (1)
-
Walvis Ridge (3)
-
-
West Atlantic (1)
-
-
Australasia
-
New Zealand (2)
-
-
biogeography (3)
-
carbon
-
C-13/C-12 (8)
-
organic carbon (1)
-
-
Cenozoic
-
Quaternary
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (4)
-
Pliocene
-
lower Pliocene (1)
-
-
-
Paleogene
-
Eocene
-
lower Eocene (3)
-
middle Eocene (1)
-
upper Eocene (5)
-
-
Oligocene
-
lower Oligocene (3)
-
-
Paleocene
-
lower Paleocene
-
Danian (1)
-
K-T boundary (3)
-
-
upper Paleocene (2)
-
-
Paleocene-Eocene Thermal Maximum (8)
-
-
-
-
clay mineralogy (1)
-
climate change (4)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 48
-
DSDP Site 400 (1)
-
DSDP Site 401 (1)
-
-
Leg 71
-
DSDP Site 513 (1)
-
-
Leg 73
-
DSDP Site 522 (1)
-
-
Leg 74
-
DSDP Site 525 (1)
-
-
Leg 78A
-
DSDP Site 543 (1)
-
-
Leg 81
-
DSDP Site 553 (1)
-
-
Leg 90
-
DSDP Site 592 (1)
-
-
Leg 93
-
DSDP Site 605 (1)
-
-
Leg 95
-
DSDP Site 612 (1)
-
-
-
Leg 12
-
DSDP Site 111 (1)
-
-
Leg 13 (1)
-
Leg 24
-
DSDP Site 237 (1)
-
-
Leg 29
-
DSDP Site 278 (1)
-
-
Leg 36
-
DSDP Site 327 (1)
-
DSDP Site 328 (1)
-
DSDP Site 329 (1)
-
DSDP Site 330 (1)
-
-
Leg 40
-
DSDP Site 362 (1)
-
-
-
diagenesis (1)
-
ecology (1)
-
Europe
-
Southern Europe
-
Italy
-
Marches Italy
-
Ancona Italy
-
Massignano Italy (2)
-
-
-
Umbria Italy
-
Perugia Italy
-
Gubbio Italy (1)
-
-
-
-
-
-
geochemistry (4)
-
heat flow (1)
-
Indian Ocean
-
Exmouth Plateau (3)
-
Naturaliste Plateau (1)
-
Ninetyeast Ridge (1)
-
Wombat Plateau (1)
-
-
Integrated Ocean Drilling Program (2)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (3)
-
-
-
-
Porifera
-
Demospongea (1)
-
Hexactinellida (1)
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (2)
-
-
-
Globigerinacea (1)
-
-
-
Radiolaria
-
Osculosida
-
Nassellina (3)
-
-
Spumellina (2)
-
-
-
-
isotopes
-
radioactive isotopes
-
Ar-40/Ar-39 (1)
-
-
stable isotopes
-
Ar-40/Ar-39 (1)
-
C-13/C-12 (8)
-
O-18/O-16 (10)
-
Si-30 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (1)
-
Coniacian (1)
-
K-T boundary (3)
-
Maestrichtian
-
lower Maestrichtian (1)
-
-
Santonian (1)
-
Senonian (2)
-
Turonian (1)
-
-
-
Jurassic (1)
-
-
metals
-
platinum group
-
iridium (2)
-
-
-
metamorphism (1)
-
museums (1)
-
noble gases
-
argon
-
Ar-40/Ar-39 (1)
-
-
-
Ocean Drilling Program
-
Leg 104 (1)
-
Leg 105
-
ODP Site 647 (1)
-
-
Leg 110
-
ODP Site 672 (1)
-
ODP Site 674 (1)
-
-
Leg 112
-
ODP Site 688 (1)
-
-
Leg 113
-
ODP Site 689 (19)
-
ODP Site 690 (22)
-
ODP Site 693 (4)
-
-
Leg 114
-
ODP Site 698 (3)
-
ODP Site 699 (3)
-
ODP Site 700 (2)
-
ODP Site 702 (2)
-
ODP Site 703 (2)
-
-
Leg 115
-
ODP Site 709 (1)
-
-
Leg 119
-
ODP Site 737 (4)
-
ODP Site 738 (9)
-
ODP Site 744 (8)
-
ODP Site 745 (4)
-
ODP Site 746 (4)
-
-
Leg 120
-
ODP Site 747 (6)
-
ODP Site 748 (8)
-
ODP Site 749 (1)
-
ODP Site 750 (2)
-
ODP Site 751 (4)
-
-
Leg 121
-
ODP Site 752 (1)
-
ODP Site 757 (1)
-
-
Leg 122
-
ODP Site 761 (2)
-
ODP Site 762 (2)
-
ODP Site 763 (1)
-
-
Leg 125
-
ODP Site 782 (1)
-
ODP Site 786 (1)
-
-
Leg 130
-
ODP Site 807 (1)
-
-
Leg 132
-
ODP Site 810 (1)
-
-
Leg 145
-
ODP Site 884 (1)
-
-
Leg 149
-
ODP Site 897 (1)
-
ODP Site 900 (1)
-
-
Leg 159
-
ODP Site 959 (1)
-
-
Leg 171B
-
ODP Site 1049 (1)
-
ODP Site 1050 (1)
-
ODP Site 1052 (1)
-
ODP Site 1053 (1)
-
-
Leg 174A
-
ODP Site 1073 (1)
-
-
Leg 174AX
-
Millville Site (1)
-
-
Leg 175
-
ODP Site 1087 (1)
-
-
Leg 177
-
ODP Site 1090 (1)
-
-
Leg 183
-
ODP Site 1135 (1)
-
ODP Site 1136 (1)
-
ODP Site 1138 (4)
-
-
Leg 189
-
ODP Site 1172 (1)
-
-
Leg 198
-
ODP Site 1209 (4)
-
ODP Site 1210 (1)
-
ODP Site 1211 (1)
-
ODP Site 1212 (1)
-
-
Leg 199
-
ODP Site 1220 (1)
-
-
Leg 207
-
ODP Site 1260 (1)
-
-
Leg 208
-
ODP Site 1263 (1)
-
-
-
oxygen
-
O-18/O-16 (10)
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
Southeast Pacific (1)
-
-
Equatorial Pacific (2)
-
North Pacific
-
Northeast Pacific (1)
-
Northwest Pacific
-
Emperor Seamounts (1)
-
Shatsky Rise (4)
-
-
-
South Pacific
-
Southeast Pacific (1)
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Emperor Seamounts (1)
-
Shatsky Rise (4)
-
-
Ontong Java Plateau (1)
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
-
paleoclimatology (7)
-
paleoecology (13)
-
paleogeography (2)
-
paleomagnetism (1)
-
paleontology (2)
-
palynomorphs
-
Dinoflagellata (4)
-
-
Plantae
-
algae
-
diatoms (1)
-
nannofossils (5)
-
-
-
sedimentary rocks
-
carbonate rocks (1)
-
chemically precipitated rocks
-
chert (1)
-
-
clastic rocks
-
porcellanite (1)
-
-
-
sedimentary structures
-
biogenic structures
-
bioturbation (1)
-
-
-
sediments
-
carbonate sediments (1)
-
clastic sediments
-
ooze (4)
-
-
marine sediments (10)
-
-
silicon
-
Si-30 (1)
-
-
soils (1)
-
Southern Hemisphere (1)
-
Southern Ocean
-
Weddell Sea
-
Maud Rise (36)
-
-
-
stratigraphy (2)
-
tektites (2)
-
thallophytes (2)
-
United States
-
Atlantic Coastal Plain (2)
-
New Jersey
-
Cumberland County New Jersey (1)
-
Millville New Jersey (1)
-
-
-
weathering (2)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks (1)
-
chemically precipitated rocks
-
chert (1)
-
-
clastic rocks
-
porcellanite (1)
-
-
-
-
sedimentary structures
-
sedimentary structures
-
biogenic structures
-
bioturbation (1)
-
-
-
-
sediments
-
sediments
-
carbonate sediments (1)
-
clastic sediments
-
ooze (4)
-
-
marine sediments (10)
-
-
-
soils
-
soils (1)
-
Maud Rise
Photosymbiosis in planktonic foraminifera across the Paleocene–Eocene thermal maximum
Stratigraphic and sedimentological aspects of the worldwide distribution of Apectodinium in Paleocene/Eocene Thermal Maximum deposits
Abstract The Paleocene/Eocene Thermal Maximum (PETM) is characterized by pronounced global warming and associated environmental changes. In the more-or-less two decades since prior regional syntheses of Apectodinium distribution at the PETM, extensive biological and geochemical datasets have elucidated the effect of rising world temperatures on climate and the biome. A Carbon Isotope Excursion (CIE) that marks the Paleocene/Eocene Boundary is associated with an acme of marine dinocysts of the genus Apectodinium in many locations. Distinctive foraminiferal and calcareous nannofossil populations may also be present. For this updated, dinocyst-oriented view of the PETM, data from worldwide locations have been evaluated with an emphasis on stratigraphic and sedimentological context. What has emerged is that a change in lithology is common, often to a distinctive siltstone or claystone unit, which contrasts with underlying and overlying lithotypes. This change, present in shallow marine/coastal settings and in deep-water turbidite deposits, is attributed to radical modifications of precipitation and erosional processes. An abrupt boundary carries the implication that some time (of unknowable duration) is potentially missing, which then requires caution in the interpretation of the pacing of events in relation to that boundary. In most instances an ‘abrupt’ or ‘rapid’ CIE onset can be attributed to a data gap at a hiatus, particularly in shallow shelf settings where transgression resulted from sea-level rise associated with the PETM. Truly gradational lower boundaries of the PETM interval are quite unusual and, if present, are poorly known so far. Gradational upper boundaries are more common, but erosional upper boundaries have been reported. Taxonomic changes have been made to clarify identification issues that have adversely impacted some biostratigraphic interpretations. Apectodinium hyperacanthum has been retained in Wetzeliella , its original genus. The majority of specimens previously assigned to Apectodinium hyperacanthum or Wetzeliella ( Apectodinium ) hyperacanthum have been reassigned to an informal species, Apectodinium sp. 1. Dracodinium astra has been retained in its original genus as Wetzeliella astra and is emended.
Planktonic Foraminiferal Endemism at Southern High Latitudes Following the Terminal Cretaceous Extinction
The Ecological Balance of Nature: Identifying Stasis and Growth in Late Cretaceous Planktonic Foraminifera from ODP Hole 690C (Weddell Sea)
Effects of size-dependent sediment mixing on deep-sea records of the Paleocene-Eocene Thermal Maximum
Identifying disruptions to the ecological balance of nature: a foraminiferal example across the initiation of the Paleocene–Eocene thermal maximum
New species of Neogene radiolarians from the Southern Ocean – part IV
New species of Neogene radiolarians from the Southern Ocean – part III
Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum
On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians
Glomospira Acme During the Paleocene-Eocene Thermal Maximum: Response to CaCO 3 Dissolution or to Ecological Forces?
New species of Neogene radiolarians from the Southern Ocean – part II
R. V. Dingle Ostracod Collection: Natural History Museum, London
New species of Neogene radiolarians from the Southern Ocean
A geographic test of species selection using planktonic foraminifera during the Cretaceous/Paleogene mass extinction
High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2
Impact of the Paleocene-Eocene thermal maximum on deep-ocean microbenthic community structure: Using rank-abundance curves to quantify paleoecological response
In order to better define the late Eocene clinopyroxene-bearing (cpx) spherule layer and to determine how the ejecta vary with distance from the presumed source crater (Popigai), we searched for the layer at 23 additional sites. We identified the layer at six (maybe seven) of these sites: Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) Holes 592, 699A, 703A, 709C, 786A, 1090B, and probably 738B. The cpx spherule layer occurs in magnetochron 16n.1n, which indicates an age of ca. 35.4 ± 0.1 Ma for the layer. We found the highest abundance of cpx spherules and associated microtektites in Hole 709C in the northwest Indian Ocean, and we found coesite and shocked quartz in the cpx spherule layer at this site. We also found coesite in the cpx spherule layer at Site 216 in the northeast Indian Ocean. This is the first time that coesite has been found in the cpx spherule layer, and it provides additional support for the impact origin of this layer. In addition, the discovery of coesite and shocked quartz grains (with planar deformation features [PDFs]) supports the conclusion that the pancake-shaped clay spherules associated with quartz grains exhibiting PDFs are diagenetically altered cpx spherules. An Ir anomaly was found associated with the cpx spherule layer at all four of the new sites (699A, 709C, 738B, 1090B) for which we obtained Ir data. The geometric mean of the Ir fluence for the 12 sites with Ir data is 5.7 ng/cm 2 , which is ~10% of the fluence estimated for the Cretaceous-Tertiary boundary. Based on the geographic distribution of the 23 sites now known to contain the cpx spherule layer, and 12 sites where we have good chronostratigraphy but the cpx spherule layer is apparently absent, we propose that the cpx spherule strewn field may have a ray-like distribution pattern. Within one of the rays, the abundance of spherules decreases and the percent microtektites increases with distance from Popigai. Shocked quartz and coesite have been found only in this ray at the two sites that are closest to Popigai. At several sites in the Southern Ocean, an increase in δ 18 O in the bulk carbonate occurs immediately above the cpx spherule layer. This increase may indicate a drop in temperature coincident with the impact that produced the cpx spherule layer.