- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa (1)
-
Asia
-
Indian Peninsula
-
India
-
Cauvery Basin (1)
-
-
-
-
Atlantic Ocean
-
Equatorial Atlantic (18)
-
Mid-Atlantic Ridge (1)
-
North Atlantic
-
Amazon Fan (1)
-
Blake Plateau
-
Blake Nose (2)
-
-
Cape Verde Basin (1)
-
Cape Verde Rise (1)
-
Caribbean Sea
-
Cariaco Basin (1)
-
Nicaragua Rise (1)
-
-
Ceara Rise (1)
-
Gulf of Mexico (1)
-
Northeast Atlantic
-
Galicia Bank (1)
-
-
Northwest Atlantic
-
Demerara Rise (19)
-
-
Sierra Leone Rise (1)
-
-
South Atlantic
-
Angola Basin (2)
-
Brazil Basin (1)
-
Cape Basin (1)
-
Falkland Plateau (1)
-
Rio Grande Rise (1)
-
Walvis Ridge (5)
-
-
West Atlantic (16)
-
-
Bass River (1)
-
Chicxulub Crater (3)
-
Colombian Basin (1)
-
Europe
-
Southern Europe
-
Italy
-
Umbria Italy
-
Perugia Italy
-
Gubbio Italy (1)
-
-
-
-
-
-
Indian Ocean (1)
-
Krishna-Godavari Basin (1)
-
Mediterranean Sea
-
East Mediterranean
-
Black Sea (1)
-
-
-
Mexico (1)
-
North America
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
-
North Pacific
-
Northeast Pacific (1)
-
Northwest Pacific
-
Shatsky Rise (2)
-
-
-
West Pacific
-
Northwest Pacific
-
Shatsky Rise (2)
-
-
-
-
South America
-
French Guiana (1)
-
Guiana Shield (1)
-
Guianas (1)
-
Guyana (1)
-
-
Southern Ocean
-
Weddell Sea
-
Maud Rise (2)
-
-
-
United States
-
New Jersey (1)
-
Texas (1)
-
-
-
commodities
-
glass materials (1)
-
-
elements, isotopes
-
carbon
-
C-13 (1)
-
C-13/C-12 (5)
-
organic carbon (1)
-
-
isotope ratios (9)
-
isotopes
-
radioactive isotopes
-
U-238/U-235 (1)
-
-
stable isotopes
-
C-13 (1)
-
C-13/C-12 (5)
-
Nd-144/Nd-143 (2)
-
O-18/O-16 (5)
-
Os-188/Os-187 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
actinides
-
uranium
-
U-238/U-235 (1)
-
-
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (2)
-
-
-
-
oxygen
-
O-18/O-16 (5)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs (1)
-
-
-
-
-
-
-
Invertebrata
-
Protista
-
Foraminifera (9)
-
Radiolaria (1)
-
-
-
microfossils (12)
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils (5)
-
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Paleogene
-
Eocene
-
lower Eocene
-
Ypresian (1)
-
-
middle Eocene (1)
-
-
Paleocene
-
lower Paleocene
-
Danian (2)
-
K-T boundary (4)
-
-
-
Paleocene-Eocene Thermal Maximum (2)
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (1)
-
-
Middle Cretaceous (2)
-
Upper Cretaceous
-
Cenomanian (4)
-
K-T boundary (4)
-
Maestrichtian (1)
-
Santonian (2)
-
Senonian (3)
-
Turonian (2)
-
-
-
Jurassic (1)
-
-
-
minerals
-
carbonates
-
calcite (1)
-
-
silicates
-
sheet silicates
-
mica group
-
glauconite (1)
-
-
-
-
sulfides
-
pyrite (1)
-
-
-
Primary terms
-
Africa (1)
-
Asia
-
Indian Peninsula
-
India
-
Cauvery Basin (1)
-
-
-
-
Atlantic Ocean
-
Equatorial Atlantic (18)
-
Mid-Atlantic Ridge (1)
-
North Atlantic
-
Amazon Fan (1)
-
Blake Plateau
-
Blake Nose (2)
-
-
Cape Verde Basin (1)
-
Cape Verde Rise (1)
-
Caribbean Sea
-
Cariaco Basin (1)
-
Nicaragua Rise (1)
-
-
Ceara Rise (1)
-
Gulf of Mexico (1)
-
Northeast Atlantic
-
Galicia Bank (1)
-
-
Northwest Atlantic
-
Demerara Rise (19)
-
-
Sierra Leone Rise (1)
-
-
South Atlantic
-
Angola Basin (2)
-
Brazil Basin (1)
-
Cape Basin (1)
-
Falkland Plateau (1)
-
Rio Grande Rise (1)
-
Walvis Ridge (5)
-
-
West Atlantic (16)
-
-
biogeography (1)
-
carbon
-
C-13 (1)
-
C-13/C-12 (5)
-
organic carbon (1)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Paleogene
-
Eocene
-
lower Eocene
-
Ypresian (1)
-
-
middle Eocene (1)
-
-
Paleocene
-
lower Paleocene
-
Danian (2)
-
K-T boundary (4)
-
-
-
Paleocene-Eocene Thermal Maximum (2)
-
-
-
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs (1)
-
-
-
-
-
-
-
climate change (3)
-
crust (1)
-
Deep Sea Drilling Project
-
IPOD
-
DSDP Site 603 (1)
-
Leg 71
-
DSDP Site 511 (1)
-
DSDP Site 513 (1)
-
DSDP Site 514 (1)
-
-
Leg 72
-
DSDP Site 516 (1)
-
DSDP Site 517 (1)
-
-
Leg 73
-
DSDP Site 519 (1)
-
DSDP Site 522 (1)
-
DSDP Site 524 (1)
-
-
Leg 74
-
DSDP Site 525 (2)
-
-
Leg 75
-
DSDP Site 530 (1)
-
-
Leg 76
-
DSDP Site 534 (1)
-
-
Leg 80
-
DSDP Site 550 (1)
-
-
Leg 86
-
DSDP Site 577 (1)
-
-
-
Leg 14
-
DSDP Site 144 (3)
-
-
Leg 22
-
DSDP Site 213 (1)
-
-
Leg 36
-
DSDP Site 327 (1)
-
DSDP Site 328 (1)
-
-
Leg 39
-
DSDP Site 354 (1)
-
DSDP Site 355 (1)
-
DSDP Site 356 (2)
-
DSDP Site 357 (1)
-
-
Leg 40
-
DSDP Site 361 (2)
-
DSDP Site 362 (1)
-
DSDP Site 363 (1)
-
DSDP Site 364 (2)
-
-
Leg 41
-
DSDP Site 366 (1)
-
DSDP Site 367 (1)
-
DSDP Site 368 (1)
-
-
-
diagenesis (1)
-
Europe
-
Southern Europe
-
Italy
-
Umbria Italy
-
Perugia Italy
-
Gubbio Italy (1)
-
-
-
-
-
-
geochemistry (10)
-
geophysical methods (1)
-
Indian Ocean (1)
-
Invertebrata
-
Protista
-
Foraminifera (9)
-
Radiolaria (1)
-
-
-
isotopes
-
radioactive isotopes
-
U-238/U-235 (1)
-
-
stable isotopes
-
C-13 (1)
-
C-13/C-12 (5)
-
Nd-144/Nd-143 (2)
-
O-18/O-16 (5)
-
Os-188/Os-187 (1)
-
Sr-87/Sr-86 (1)
-
-
-
Mediterranean Sea
-
East Mediterranean
-
Black Sea (1)
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (1)
-
-
Middle Cretaceous (2)
-
Upper Cretaceous
-
Cenomanian (4)
-
K-T boundary (4)
-
Maestrichtian (1)
-
Santonian (2)
-
Senonian (3)
-
Turonian (2)
-
-
-
Jurassic (1)
-
-
metals
-
actinides
-
uranium
-
U-238/U-235 (1)
-
-
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (2)
-
-
-
-
Mexico (1)
-
North America
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
ocean circulation (1)
-
Ocean Drilling Program
-
Leg 103
-
ODP Site 638 (1)
-
-
Leg 108
-
ODP Site 664 (1)
-
-
Leg 113
-
ODP Site 690 (2)
-
-
Leg 114
-
ODP Site 699 (1)
-
ODP Site 700 (1)
-
ODP Site 704 (1)
-
-
Leg 145
-
ODP Site 886 (1)
-
-
Leg 154
-
ODP Site 925 (1)
-
ODP Site 927 (1)
-
ODP Site 929 (1)
-
-
Leg 159
-
ODP Site 959 (1)
-
ODP Site 960 (1)
-
ODP Site 961 (1)
-
-
Leg 165
-
ODP Site 1001 (1)
-
ODP Site 1002 (1)
-
ODP Site 999 (1)
-
-
Leg 171B
-
ODP Site 1049 (1)
-
ODP Site 1050 (4)
-
-
Leg 177
-
ODP Site 1088 (1)
-
ODP Site 1089 (1)
-
ODP Site 1090 (1)
-
ODP Site 1091 (1)
-
ODP Site 1092 (1)
-
ODP Site 1093 (1)
-
ODP Site 1094 (1)
-
-
Leg 198
-
ODP Site 1209 (1)
-
-
Leg 199
-
ODP Site 1215 (1)
-
-
Leg 207
-
ODP Site 1257 (2)
-
ODP Site 1258 (11)
-
ODP Site 1259 (5)
-
ODP Site 1260 (6)
-
ODP Site 1261 (2)
-
-
Leg 208
-
ODP Site 1262 (2)
-
ODP Site 1263 (3)
-
ODP Site 1264 (2)
-
ODP Site 1265 (2)
-
ODP Site 1266 (2)
-
ODP Site 1267 (2)
-
-
-
oxygen
-
O-18/O-16 (5)
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
-
North Pacific
-
Northeast Pacific (1)
-
Northwest Pacific
-
Shatsky Rise (2)
-
-
-
West Pacific
-
Northwest Pacific
-
Shatsky Rise (2)
-
-
-
-
paleoclimatology (7)
-
paleoecology (6)
-
paleogeography (2)
-
paleontology (1)
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils (5)
-
-
-
plate tectonics (1)
-
sea water (1)
-
sea-level changes (2)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
clastic rocks
-
black shale (4)
-
claystone (1)
-
-
-
sedimentary structures (1)
-
sediments
-
marine sediments (4)
-
-
South America
-
French Guiana (1)
-
Guiana Shield (1)
-
Guianas (1)
-
Guyana (1)
-
-
Southern Ocean
-
Weddell Sea
-
Maud Rise (2)
-
-
-
United States
-
New Jersey (1)
-
Texas (1)
-
-
-
rock formations
-
Deccan Traps (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
clastic rocks
-
black shale (4)
-
claystone (1)
-
-
-
-
sedimentary structures
-
sedimentary structures (1)
-
-
sediments
-
sediments
-
marine sediments (4)
-
-
Leg 207
Alkenone-derived estimates of Cretaceous p CO 2
Progress in understanding middle Eocene nassellarian (Radiolaria, Polycystinea) diversity; new insights from the western equatorial Atlantic Ocean
Nanoscale trace-element zoning in pyrite framboids and implications for paleoproxy applications
Evaluating the segmented post-rift stratigraphic architecture of the Guyanas continental margin
The carbonate compensation depth in the South Atlantic Ocean since the Late Cretaceous
The Eocene Thermal Maximum 3: Reading the environmental perturbations at Gubbio (Italy)
The Paleocene–early Eocene interval is punctuated by a series of transient warming events known as hyperthermals that have been associated with changes in the carbon isotope composition of the ocean-atmosphere system. Here we present and discuss a detailed record of calcareous nannofossil and foraminiferal assemblages coupled with high-resolution geochemical, isotopic, and environmental magnetic records across the middle Ypresian at the Contessa Road section (Gubbio, Italy). This allows characterization of the Eocene Thermal Maximum 3 (ETM3, K or X) and recognition of four minor (I1, I2, J, L) hyperthermals. At the Contessa Road section, the ETM3 is marked by short-lived negative excursions in both δ 13 C and δ 18 O, pronounced changes in rock magnetic properties, and calcium carbonate reduction. These changes coupled with the moderate to low state of preservation of calcareous nannofossils and planktonic foraminifera, higher FI and agglutinated foraminifera values, along with a lower P/(P + B) ratio (P—planktonic; B—benthic) and coarse fractions provide evidence of enhanced carbonate dissolution during the ETM3. A marked shift toward warmer and more oligotrophic conditions has been inferred that suggests unstable and perturbed environmental conditions both in the photic zone and at the seafloor.
Foraminifera on the Demerara Rise offshore Surinam: crustal subsidence or shallowing of an oxygen minimum zone?
Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum
Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus
Abstract: Recent studies indicate that the bulk (80%) of Deccan trap eruptions occurred over a relatively short time interval in magnetic polarity C29r, whereas multiproxy studies from central and southeastern India place the Cretaceous-Tertiary (KT) mass extinction near the end of this main phase of Deccan volcanism suggesting a cause-and-effect relationship. Beyond India multiproxy studies also place the main Deccan phase in the uppermost Maastrichtian C29r below the KTB (planktic foraminiferal zones CF2-CF1), as indicated by a rapid shift in 187 Os/ 188 Os ratios in deep-sea sections from the Atlantic, Pacific and Indian Oceans, coincident with rapid climate warming, coeval increase in weathering, a significant decrease in bulk carbonate indicative of acidification due to volcanic SO 2 , and major biotic stress conditions expressed in species dwarfing and decreased abundance in calcareous microfossils (planktic foraminifera and nannofossils). These observations indicate that Deccan volcanism played a key role in increasing atmospheric CO 2 and SO 2 levels that resulted in global warming and acidified oceans, respectively, increasing biotic stress that predisposed faunas to eventual extinction at the KTB.
The Chicxulub ejecta deposit at Demerara Rise (western Atlantic): Dissecting the geochemical anomaly using laser ablation–mass spectrometry
Nutrient trap for Late Cretaceous organic-rich black shales in the tropical North Atlantic
Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes
Latitudinal migration of calcareous nannofossil Micula murus in the Maastrichtian: Implications for global climate change
Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic
A new breath of life for anoxia
Abstract Post-Turonian (Late Cretaceous) rudist-bearing limestones of the Nurra region in northwestern Sardinia (northern Tethyan margin) and in the central-southern Apennines and Apulia (central Tethyan domain) have recorded relevant changes in the characteristics of the carbonate platforms following the “middle” Cretaceous crisis events which affected the peri-Tethyan region as well as other regions worldwide. Rudist bivalves became the dominant lithogenetic taxon owing to their proliferation in shallow-water environments and strong dominance of Late Cretaceous carbonate factories. Their inception, evolution, and demise were seemingly controlled by a complex interplay of environmental processes that, acting on a global scale, profoundly modified the Early Cretaceous hydrosphere-atmosphere system and forced Tethyan depositional systems to change their organization, internal architecture, and facies patterns. As a result, wide, open shelves developed where the almost ubiquitous mode of carbonate fixation was that of foramol factories. In this paper, evidence of the remarkable regional variability in the rudist-bearing carbonate platforms of the Mediterranean Tethys is presented. The analysis of the resulting shallow-water facies has demonstrated that, in spite of several stratigraphic similarities and common sedimentological features, some remarkable differences occurred between the northern Tethyan margin and the central Tethyan banks as regards the areal partitioning of the main paleoecologic controlling factors. This resulted in the deposition of rhodalgal successions in Sardinia (northern Tethyan margin) and rudist-rich foramol facies in the Apennine-Apulia (central Tethys) regions, respectively. Such Late Cretaceous carbonate systems can be viewed as geological products which have closely and coherently recorded the globally changing environmental conditions of the oceanic realm. In spite of this, the difference of the facies partitioning in different Tethyan regions according to a latitudinal gradient is interpreted as derived mainly from local variable paleoceanographic and paleoclimatic conditions.