- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Egypt (1)
-
Tunisia (2)
-
-
Southern Africa (1)
-
-
Asia
-
Indian Peninsula
-
India (1)
-
-
Middle East
-
Israel (2)
-
-
-
Atlantic Ocean
-
Equatorial Atlantic (2)
-
Mid-Atlantic Ridge (2)
-
North Atlantic
-
Bay of Biscay (1)
-
Blake Plateau
-
Blake Nose (1)
-
-
Caribbean Sea (1)
-
Ceara Rise (1)
-
Northeast Atlantic
-
Iberian abyssal plain (1)
-
-
Northwest Atlantic
-
Demerara Rise (1)
-
-
Rockall Plateau (1)
-
Sierra Leone Rise (2)
-
-
South Atlantic
-
Angola Basin (2)
-
Brazil Basin (1)
-
Cape Basin (2)
-
Falkland Plateau (1)
-
Rio Grande Rise (2)
-
Southeast Atlantic (4)
-
Walvis Ridge (15)
-
-
West Atlantic (1)
-
-
Broken Ridge (2)
-
Chicxulub Crater (2)
-
Commonwealth of Independent States
-
Ukraine
-
Boltyshka Depression (1)
-
Ukrainian Shield (1)
-
-
-
Europe
-
Central Europe
-
Germany (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Cantabrian Basin (1)
-
-
-
Italy
-
Umbria Italy
-
Perugia Italy
-
Gubbio Italy (1)
-
-
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
Ukrainian Shield (1)
-
-
Western Europe
-
France
-
Aquitaine (1)
-
-
Iceland
-
Laki (1)
-
-
-
-
Hudson Canyon (1)
-
Indian Ocean
-
Exmouth Plateau (1)
-
-
Kerguelen Plateau (2)
-
North America
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (2)
-
Southeast Pacific (1)
-
-
Equatorial Pacific (1)
-
North Pacific
-
Northeast Pacific (2)
-
Northwest Pacific
-
Hess Rise (1)
-
Shatsky Rise (5)
-
-
-
South Pacific
-
Southeast Pacific (1)
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Hess Rise (1)
-
Shatsky Rise (5)
-
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
-
Russian Platform
-
Ukrainian Shield (1)
-
-
Southern Ocean
-
Weddell Sea
-
Maud Rise (1)
-
-
-
United States
-
Atlantic Coastal Plain (2)
-
California
-
Fresno County California (1)
-
-
New Jersey
-
Atlantic County New Jersey
-
Atlantic City New Jersey (1)
-
-
Ocean County New Jersey (1)
-
-
Texas
-
Brazos River (1)
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (7)
-
organic carbon (1)
-
-
halogens (1)
-
isotope ratios (11)
-
isotopes
-
stable isotopes
-
C-13/C-12 (7)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (8)
-
Sr-87/Sr-86 (2)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
platinum group
-
iridium (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
oxygen
-
O-18/O-16 (8)
-
-
-
fossils
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (2)
-
-
-
-
Mollusca (1)
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
Globigerinacea
-
Hedbergella (1)
-
Heterohelicidae (1)
-
-
-
-
-
-
microfossils (24)
-
palynomorphs (1)
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils
-
Sphenolithus (1)
-
-
-
-
thallophytes (5)
-
-
geochronology methods
-
paleomagnetism (4)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
lower Tertiary (1)
-
Neogene
-
Miocene
-
lower Miocene (2)
-
-
-
Paleogene
-
Eocene
-
lower Eocene (4)
-
middle Eocene (1)
-
-
Oligocene
-
upper Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
Danian (4)
-
K-T boundary (10)
-
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (2)
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (1)
-
K-T boundary (10)
-
Maestrichtian
-
upper Maestrichtian (1)
-
-
Marshalltown Formation (1)
-
Navesink Formation (1)
-
Senonian (5)
-
-
-
Jurassic
-
Lower Jurassic
-
Toarcian (1)
-
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Damara System (1)
-
Neoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites
-
harzburgite (1)
-
lherzolite (1)
-
-
-
-
volcanic rocks
-
basalts
-
flood basalts (1)
-
-
-
-
-
minerals
-
oxides
-
akaganeite (1)
-
iron oxides (1)
-
magnetite (1)
-
-
-
Primary terms
-
Africa
-
North Africa
-
Egypt (1)
-
Tunisia (2)
-
-
Southern Africa (1)
-
-
Asia
-
Indian Peninsula
-
India (1)
-
-
Middle East
-
Israel (2)
-
-
-
Atlantic Ocean
-
Equatorial Atlantic (2)
-
Mid-Atlantic Ridge (2)
-
North Atlantic
-
Bay of Biscay (1)
-
Blake Plateau
-
Blake Nose (1)
-
-
Caribbean Sea (1)
-
Ceara Rise (1)
-
Northeast Atlantic
-
Iberian abyssal plain (1)
-
-
Northwest Atlantic
-
Demerara Rise (1)
-
-
Rockall Plateau (1)
-
Sierra Leone Rise (2)
-
-
South Atlantic
-
Angola Basin (2)
-
Brazil Basin (1)
-
Cape Basin (2)
-
Falkland Plateau (1)
-
Rio Grande Rise (2)
-
Southeast Atlantic (4)
-
Walvis Ridge (15)
-
-
West Atlantic (1)
-
-
biogeography (4)
-
carbon
-
C-13/C-12 (7)
-
organic carbon (1)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
lower Tertiary (1)
-
Neogene
-
Miocene
-
lower Miocene (2)
-
-
-
Paleogene
-
Eocene
-
lower Eocene (4)
-
middle Eocene (1)
-
-
Oligocene
-
upper Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
Danian (4)
-
K-T boundary (10)
-
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (2)
-
-
-
-
climate change (3)
-
continental drift (1)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 48
-
DSDP Site 400 (3)
-
-
Leg 62
-
DSDP Site 463 (1)
-
DSDP Site 465 (1)
-
-
Leg 71
-
DSDP Site 511 (1)
-
DSDP Site 513 (1)
-
DSDP Site 514 (1)
-
-
Leg 72
-
DSDP Site 516 (6)
-
DSDP Site 517 (1)
-
-
Leg 73
-
DSDP Site 519 (1)
-
DSDP Site 522 (2)
-
DSDP Site 524 (1)
-
-
Leg 74
-
DSDP Site 525 (11)
-
DSDP Site 526 (5)
-
DSDP Site 527 (9)
-
DSDP Site 528 (11)
-
DSDP Site 529 (3)
-
-
Leg 80
-
DSDP Site 548 (2)
-
DSDP Site 549 (2)
-
DSDP Site 550 (1)
-
-
Leg 81
-
DSDP Site 553 (1)
-
-
Leg 82
-
DSDP Site 558 (1)
-
DSDP Site 563 (2)
-
-
Leg 86
-
DSDP Site 577 (5)
-
-
Leg 90
-
DSDP Site 588 (1)
-
-
Leg 93
-
DSDP Site 605 (1)
-
-
Leg 94
-
DSDP Site 607 (2)
-
DSDP Site 608 (1)
-
DSDP Site 610 (3)
-
-
-
Leg 10
-
DSDP Site 94 (1)
-
DSDP Site 95 (2)
-
-
Leg 11
-
DSDP Site 98 (1)
-
-
Leg 12
-
DSDP Site 119 (1)
-
-
Leg 14
-
DSDP Site 144 (2)
-
-
Leg 15
-
DSDP Site 151 (1)
-
-
Leg 2
-
DSDP Site 10 (1)
-
-
Leg 21
-
DSDP Site 207 (1)
-
DSDP Site 208 (1)
-
DSDP Site 209 (1)
-
-
Leg 24
-
DSDP Site 237 (2)
-
-
Leg 26
-
DSDP Site 253 (1)
-
DSDP Site 254 (1)
-
DSDP Site 258 (1)
-
-
Leg 28
-
DSDP Site 264 (1)
-
-
Leg 29
-
DSDP Site 277 (1)
-
DSDP Site 281 (1)
-
-
Leg 3
-
DSDP Site 14 (1)
-
DSDP Site 17 (1)
-
DSDP Site 19 (1)
-
DSDP Site 20 (1)
-
DSDP Site 22 (1)
-
-
Leg 33
-
DSDP Site 318 (1)
-
-
Leg 36
-
DSDP Site 327 (1)
-
DSDP Site 328 (2)
-
DSDP Site 329 (1)
-
-
Leg 39
-
DSDP Site 354 (1)
-
DSDP Site 355 (1)
-
DSDP Site 356 (2)
-
DSDP Site 357 (5)
-
-
Leg 40
-
DSDP Site 360 (2)
-
DSDP Site 361 (1)
-
DSDP Site 362 (3)
-
DSDP Site 363 (3)
-
DSDP Site 364 (1)
-
-
Leg 41
-
DSDP Site 366 (2)
-
-
Leg 43
-
DSDP Site 384 (4)
-
-
Leg 6
-
DSDP Site 44 (1)
-
-
-
Europe
-
Central Europe
-
Germany (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Cantabrian Basin (1)
-
-
-
Italy
-
Umbria Italy
-
Perugia Italy
-
Gubbio Italy (1)
-
-
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
Ukrainian Shield (1)
-
-
Western Europe
-
France
-
Aquitaine (1)
-
-
Iceland
-
Laki (1)
-
-
-
-
geochemistry (2)
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites
-
harzburgite (1)
-
lherzolite (1)
-
-
-
-
volcanic rocks
-
basalts
-
flood basalts (1)
-
-
-
-
inclusions (1)
-
Indian Ocean
-
Exmouth Plateau (1)
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (2)
-
-
-
-
Mollusca (1)
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
Globigerinacea
-
Hedbergella (1)
-
Heterohelicidae (1)
-
-
-
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (7)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (8)
-
Sr-87/Sr-86 (2)
-
-
-
lava (1)
-
mantle (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (1)
-
K-T boundary (10)
-
Maestrichtian
-
upper Maestrichtian (1)
-
-
Marshalltown Formation (1)
-
Navesink Formation (1)
-
Senonian (5)
-
-
-
Jurassic
-
Lower Jurassic
-
Toarcian (1)
-
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
platinum group
-
iridium (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
North America
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
Ocean Drilling Program
-
Leg 108
-
ODP Site 664 (1)
-
ODP Site 667 (2)
-
-
Leg 112
-
ODP Site 688 (1)
-
-
Leg 113
-
ODP Site 690 (4)
-
-
Leg 114
-
ODP Site 698 (1)
-
ODP Site 699 (1)
-
ODP Site 700 (1)
-
ODP Site 702 (1)
-
ODP Site 703 (1)
-
ODP Site 704 (1)
-
-
Leg 115
-
ODP Site 709 (2)
-
ODP Site 714 (1)
-
-
Leg 119
-
ODP Site 738 (1)
-
ODP Site 744 (1)
-
-
Leg 120
-
ODP Site 748 (2)
-
ODP Site 750 (1)
-
-
Leg 121
-
ODP Site 752 (2)
-
-
Leg 122
-
ODP Site 761 (1)
-
-
Leg 143
-
ODP Site 865 (1)
-
-
Leg 149
-
ODP Site 897 (1)
-
-
Leg 150
-
ODP Site 902 (1)
-
ODP Site 903 (1)
-
ODP Site 904 (1)
-
ODP Site 906 (1)
-
-
Leg 154
-
ODP Site 925 (1)
-
ODP Site 927 (1)
-
ODP Site 929 (1)
-
-
Leg 159
-
ODP Site 960 (1)
-
ODP Site 961 (1)
-
-
Leg 171B
-
ODP Site 1049 (1)
-
-
Leg 177
-
ODP Site 1088 (1)
-
ODP Site 1089 (1)
-
ODP Site 1090 (1)
-
ODP Site 1091 (1)
-
ODP Site 1092 (1)
-
ODP Site 1093 (1)
-
ODP Site 1094 (1)
-
-
Leg 198
-
ODP Site 1209 (2)
-
-
Leg 199
-
ODP Site 1220 (1)
-
-
Leg 207
-
ODP Site 1258 (1)
-
ODP Site 1260 (1)
-
-
Leg 208
-
ODP Site 1262 (2)
-
ODP Site 1263 (1)
-
ODP Site 1264 (2)
-
ODP Site 1265 (2)
-
ODP Site 1266 (1)
-
ODP Site 1267 (1)
-
-
-
ocean floors (1)
-
oceanography (1)
-
oxygen
-
O-18/O-16 (8)
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (2)
-
Southeast Pacific (1)
-
-
Equatorial Pacific (1)
-
North Pacific
-
Northeast Pacific (2)
-
Northwest Pacific
-
Hess Rise (1)
-
Shatsky Rise (5)
-
-
-
South Pacific
-
Southeast Pacific (1)
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Hess Rise (1)
-
Shatsky Rise (5)
-
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Tasman Sea (1)
-
-
-
-
paleoclimatology (5)
-
paleoecology (9)
-
paleogeography (1)
-
paleomagnetism (4)
-
paleontology (1)
-
palynomorphs (1)
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils
-
Sphenolithus (1)
-
-
-
-
plate tectonics (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Damara System (1)
-
Neoproterozoic (1)
-
-
-
-
sea-floor spreading (1)
-
sea-level changes (2)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
-
sedimentation (4)
-
sediments
-
clastic sediments
-
ooze (1)
-
sand (1)
-
-
marine sediments (4)
-
-
Southern Ocean
-
Weddell Sea
-
Maud Rise (1)
-
-
-
stratigraphy (3)
-
thallophytes (5)
-
United States
-
Atlantic Coastal Plain (2)
-
California
-
Fresno County California (1)
-
-
New Jersey
-
Atlantic County New Jersey
-
Atlantic City New Jersey (1)
-
-
Ocean County New Jersey (1)
-
-
Texas
-
Brazos River (1)
-
-
-
-
rock formations
-
Deccan Traps (3)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
ooze (1)
-
sand (1)
-
-
marine sediments (4)
-
-
Leg 74
The carbonate compensation depth in the South Atlantic Ocean since the Late Cretaceous
Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: A global survey
Deccan volcanism, one of Earth's largest flood basalt provinces, erupted ~80% of its total volume (phase 2) during a relatively short time in the uppermost Maastrichtian paleomagnetic chron C29r and ended with the Cretaceous-Tertiary boundary mass extinction. Full biotic recovery in the marine realm was delayed at least 500 k.y. or until after the last Deccan eruptions in C29n (phase 3, 14% of the total Deccan volume). For over 30 yr, the mass extinction has been commonly attributed to the Chicxulub impact, and the delayed recovery remained an enigma. Here, we demonstrate that the two phases of Deccan volcanism can account for both the mass extinction and delayed marine recovery. In India, a direct correlation between Deccan eruptions (phase 2) and the mass extinction reveals that ~50% of the planktic foraminifer species gradually disappeared during volcanic eruptions prior to the first of four lava megaflows, reaching ~1500 km across India, and out to the Bay of Bengal. Another 50% disappeared after the first megaflow, and the mass extinction was complete with the last megaflow. Throughout this interval, blooms of the disaster opportunist Guembelitria cretacea dominate shallow-marine assemblages in coeval intervals from India to the Tethys and the Atlantic Oceans to Texas. Similar high-stress environments dominated by blooms of Guembelitria and/or Globoconusa are observed correlative with Deccan volcanism phase 3 in the early Danian C29n, followed by full biotic recovery after volcanism ended. The mass extinction and high-stress conditions may be explained by the intense Deccan volcanism leading to rapid global warming and cooling in C29r and C29n, enhanced weathering, continental runoff, and ocean acidification, resulting in a carbonate crisis in the marine environment.
The early Danian hyperthermal event at Boltysh (Ukraine): Relation to Cretaceous-Paleogene boundary events
The Boltysh meteorite impact crater formed in the Ukrainian Shield on the margin of the Tethys Ocean a few thousand years before the Cretaceous-Paleogene boundary and was rapidly filled by a freshwater lake. Sediments filling the lake vary from early lacustrine turbidites and silts to ~300 m of fine silts, organic carbon–rich muds, oil shales, and lamenites that record early Danian terrestrial climate signals at high temporal resolution. Combined carbon isotope and palynological data show that the fine-grained organic carbon–rich lacustrine sediments preserve a uniquely complete and detailed negative carbon isotope excursion in an expanded section of several hundred meters. The position of the carbon isotope excursion in the early Danian stage of the Paleogene period, around 200 k.y. above the Cretaceous-Paleogene boundary, leads us to correlate it to the Dan-C2 carbon isotope excursion recorded in marine sediments of the same age. The more complete Boltysh carbon isotope excursion record indicates a δ 13 C shift of around -3‰, but also a more extended recovery period, strikingly similar in pattern to the highest fidelity carbon isotope excursion records available for the Toarcian and Paleocene-Eocene hyperthermal events. Changes in floral communities through the carbon isotope excursion recorded at Boltysh reflect changing biomes caused by rapidly warming climate, followed by recovery, indicating that this early Danian hyperthermal event had a similar duration to the Toarcian and Paleocene-Eocene events.
Atmospheric halogen and acid rains during the main phase of Deccan eruptions: Magnetic and mineral evidence
Environmental changes linked to Deccan volcanism are still poorly known. A major limitation resides in the paucity of direct Deccan volcanism markers and in the geologically short interval where both impact and volcanism occurred, making it hard to evaluate their contributions to the mass extinction. We investigated the low-magnetic-susceptibility interval just below the iridium-rich layer of the Bidart (France) section, which was recently hypothesized to be the result of paleoenvironmental perturbations linked to paroxysmal Deccan phase 2. Results show a drastic decrease of detrital magnetite and presence of scarce akaganeite, a hypothesized reaction product formed in the aerosols derived from reaction of a volcanic plume with water and oxygen in the high atmosphere. A weathering model of the consequences of acidic rains on a continental regolith reveals nearly complete magnetite dissolution after ~31,000 yr, which is consistent with our magnetic data and falls within the duration of the Deccan phase 2. These results highlight the nature and importance of the Deccan-related environmental changes leading up to the end- Cretaceous mass extinction.