- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Egypt (1)
-
Tunisia
-
El Kef Tunisia (1)
-
-
-
-
Arctic region
-
Greenland (1)
-
-
Asia
-
Middle East
-
Israel (1)
-
-
-
Atlantic Ocean
-
North Atlantic
-
Bermuda Rise (4)
-
Blake Plateau
-
Blake Nose (1)
-
-
Cape Verde Basin (1)
-
Caribbean Sea
-
Nicaragua Rise (1)
-
-
Gulf of Mexico (3)
-
North Sea (1)
-
Northwest Atlantic (3)
-
-
South Atlantic
-
Falkland Plateau (1)
-
Rio Grande Rise (1)
-
Walvis Ridge (2)
-
-
-
Atlantic Ocean Islands
-
Bermuda (1)
-
-
Chicxulub Crater (1)
-
Europe
-
Southern Europe
-
Iberian Peninsula
-
Spain (1)
-
-
-
-
Grand Banks (2)
-
Indian Ocean
-
Exmouth Plateau (2)
-
Wombat Plateau (1)
-
-
Mediterranean region (1)
-
North America (1)
-
Pacific Ocean
-
Central Pacific (1)
-
North Pacific
-
Mid-Pacific Mountains (1)
-
Northwest Pacific
-
Shatsky Rise (3)
-
-
-
South Pacific (1)
-
West Pacific
-
Northwest Pacific
-
Shatsky Rise (3)
-
-
-
-
United States
-
Atlantic Coastal Plain (1)
-
Kansas (1)
-
Mississippi (1)
-
Texas (1)
-
Virginia (1)
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (5)
-
-
isotope ratios (5)
-
isotopes
-
stable isotopes
-
C-13/C-12 (5)
-
O-18/O-16 (5)
-
-
-
metals
-
alkali metals
-
potassium (1)
-
sodium (1)
-
-
alkaline earth metals
-
calcium
-
Sr/Ca (1)
-
-
strontium
-
Sr/Ca (1)
-
-
-
aluminum (1)
-
manganese (1)
-
platinum group
-
iridium (1)
-
platinum (1)
-
-
-
oxygen
-
O-18/O-16 (5)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Pisces (1)
-
-
-
Invertebrata
-
Protista
-
Foraminifera
-
Rotaliina
-
Globigerinacea
-
Globigerinidae
-
Globigerina (1)
-
-
Heterohelicidae (1)
-
-
-
-
Radiolaria (2)
-
-
-
microfossils (13)
-
palynomorphs
-
acritarchs (1)
-
Dinoflagellata (1)
-
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils
-
Sphenolithus (1)
-
-
-
-
-
geochronology methods
-
paleomagnetism (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
middle Eocene (1)
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (3)
-
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Hatteras Formation (1)
-
Lower Cretaceous
-
Albian (1)
-
Blake-Bahama Formation (1)
-
Neocomian (1)
-
-
Upper Cretaceous
-
K-T boundary (3)
-
Maestrichtian
-
upper Maestrichtian (2)
-
-
Senonian (4)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
basanite (1)
-
tephrite (1)
-
-
-
-
metamorphic rocks
-
turbidite (1)
-
-
minerals
-
minerals (1)
-
silicates
-
chain silicates
-
pyroxene group
-
clinopyroxene (1)
-
-
-
sheet silicates
-
chlorite group
-
chlorite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
Africa
-
North Africa
-
Egypt (1)
-
Tunisia
-
El Kef Tunisia (1)
-
-
-
-
Arctic region
-
Greenland (1)
-
-
Asia
-
Middle East
-
Israel (1)
-
-
-
Atlantic Ocean
-
North Atlantic
-
Bermuda Rise (4)
-
Blake Plateau
-
Blake Nose (1)
-
-
Cape Verde Basin (1)
-
Caribbean Sea
-
Nicaragua Rise (1)
-
-
Gulf of Mexico (3)
-
North Sea (1)
-
Northwest Atlantic (3)
-
-
South Atlantic
-
Falkland Plateau (1)
-
Rio Grande Rise (1)
-
Walvis Ridge (2)
-
-
-
Atlantic Ocean Islands
-
Bermuda (1)
-
-
biogeography (2)
-
carbon
-
C-13/C-12 (5)
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
middle Eocene (1)
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (3)
-
-
-
-
-
-
chemical analysis (1)
-
Chordata
-
Vertebrata
-
Pisces (1)
-
-
-
clay mineralogy (2)
-
climate change (1)
-
Deep Sea Drilling Project
-
IPOD
-
DSDP Site 603 (1)
-
Leg 47
-
DSDP Site 398 (1)
-
-
Leg 48
-
DSDP Site 400 (1)
-
DSDP Site 402 (1)
-
-
Leg 50
-
DSDP Site 415 (1)
-
-
Leg 62
-
DSDP Site 463 (1)
-
DSDP Site 465 (1)
-
-
Leg 74
-
DSDP Site 525 (1)
-
DSDP Site 527 (1)
-
DSDP Site 528 (2)
-
-
Leg 79
-
DSDP Site 546 (1)
-
DSDP Site 547 (1)
-
-
Leg 80
-
DSDP Site 548 (1)
-
-
Leg 86
-
DSDP Site 577 (2)
-
-
Leg 93
-
DSDP Site 605 (1)
-
-
Leg 95 (1)
-
-
Leg 10
-
DSDP Site 86 (1)
-
DSDP Site 94 (1)
-
DSDP Site 95 (2)
-
DSDP Site 96 (1)
-
-
Leg 11
-
DSDP Site 105 (5)
-
-
Leg 12
-
DSDP Site 111 (2)
-
-
Leg 14
-
DSDP Site 137 (1)
-
-
Leg 15
-
DSDP Site 152 (1)
-
-
Leg 2
-
DSDP Site 10 (1)
-
-
Leg 26
-
DSDP Site 250 (1)
-
DSDP Site 256 (1)
-
DSDP Site 257 (1)
-
-
Leg 27
-
DSDP Site 259 (1)
-
-
Leg 28
-
DSDP Site 269 (1)
-
-
Leg 30
-
DSDP Site 287 (1)
-
-
Leg 31
-
DSDP Site 290 (1)
-
-
Leg 32
-
DSDP Site 305 (1)
-
-
Leg 39
-
DSDP Site 356 (3)
-
DSDP Site 357 (1)
-
-
Leg 41
-
DSDP Site 367 (3)
-
DSDP Site 369 (1)
-
DSDP Site 370 (1)
-
-
Leg 43
-
DSDP Site 382 (2)
-
DSDP Site 384 (12)
-
DSDP Site 385 (2)
-
DSDP Site 386 (4)
-
DSDP Site 387 (4)
-
-
Leg 44
-
DSDP Site 390 (1)
-
DSDP Site 391 (2)
-
DSDP Site 392 (1)
-
-
-
diagenesis (2)
-
Europe
-
Southern Europe
-
Iberian Peninsula
-
Spain (1)
-
-
-
-
geochemistry (2)
-
geophysical methods (2)
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
basanite (1)
-
tephrite (1)
-
-
-
Indian Ocean
-
Exmouth Plateau (2)
-
Wombat Plateau (1)
-
-
Invertebrata
-
Protista
-
Foraminifera
-
Rotaliina
-
Globigerinacea
-
Globigerinidae
-
Globigerina (1)
-
-
Heterohelicidae (1)
-
-
-
-
Radiolaria (2)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (5)
-
O-18/O-16 (5)
-
-
-
lava (1)
-
mantle (2)
-
Mediterranean region (1)
-
Mesozoic
-
Cretaceous
-
Hatteras Formation (1)
-
Lower Cretaceous
-
Albian (1)
-
Blake-Bahama Formation (1)
-
Neocomian (1)
-
-
Upper Cretaceous
-
K-T boundary (3)
-
Maestrichtian
-
upper Maestrichtian (2)
-
-
Senonian (4)
-
-
-
-
metals
-
alkali metals
-
potassium (1)
-
sodium (1)
-
-
alkaline earth metals
-
calcium
-
Sr/Ca (1)
-
-
strontium
-
Sr/Ca (1)
-
-
-
aluminum (1)
-
manganese (1)
-
platinum group
-
iridium (1)
-
platinum (1)
-
-
-
mineralogy (1)
-
minerals (1)
-
North America (1)
-
Ocean Drilling Program
-
Leg 113
-
ODP Site 690 (1)
-
-
Leg 122
-
ODP Site 761 (2)
-
ODP Site 762 (1)
-
-
Leg 171B
-
ODP Site 1049 (1)
-
ODP Site 1050 (1)
-
ODP Site 1051 (1)
-
ODP Site 1052 (1)
-
-
Leg 174AX (1)
-
Leg 198
-
ODP Site 1209 (1)
-
ODP Site 1212 (1)
-
-
Leg 208
-
ODP Site 1262 (1)
-
-
-
ocean floors (2)
-
oxygen
-
O-18/O-16 (5)
-
-
Pacific Ocean
-
Central Pacific (1)
-
North Pacific
-
Mid-Pacific Mountains (1)
-
Northwest Pacific
-
Shatsky Rise (3)
-
-
-
South Pacific (1)
-
West Pacific
-
Northwest Pacific
-
Shatsky Rise (3)
-
-
-
-
paleoclimatology (2)
-
paleoecology (3)
-
paleogeography (1)
-
paleomagnetism (1)
-
paleontology (1)
-
palynomorphs
-
acritarchs (1)
-
Dinoflagellata (1)
-
-
petrology (1)
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils
-
Sphenolithus (1)
-
-
-
-
plate tectonics (1)
-
sea-floor spreading (1)
-
sedimentary petrology (2)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
limestone (1)
-
-
-
sedimentation (2)
-
sediments
-
marine sediments (2)
-
-
slope stability (1)
-
stratigraphy (5)
-
tectonics (1)
-
United States
-
Atlantic Coastal Plain (1)
-
Kansas (1)
-
Mississippi (1)
-
Texas (1)
-
Virginia (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
limestone (1)
-
-
-
turbidite (1)
-
-
sediments
-
sediments
-
marine sediments (2)
-
-
turbidite (1)
-
Leg 43
Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat and symbiosis
A new serial Cretaceous planktic foraminifer (Family Heterohelicidae Cushman, 1927) from the Upper Maastrichtian of the equatorial Central Pacific
Evolution of Calcareous Nannoplankton and the Recovery of Marine Food Webs After the Cretaceous-Paleocene Mass Extinction
New imaging techniques applied to Paleogene radiolaria
Origin of the Bermuda volcanoes and the Bermuda Rise: History, observations, models, and puzzles
Cores recovered on Deep Sea Drilling Program leg 43 and on Bermuda itself, together with geophysical data (anomalies in basement depth, geoid, and heatflow) and modeling have long suggested that the uplift forming the Bermuda Rise, as well as the initial igneous activity that produced the Bermuda volcanoes, began ca. 47–40 Ma, during the early to middle part of the Middle Eocene. Some authors attribute 65 Ma igneous activity in Mississippi and 115 Ma activity in Kansas to a putative “Bermuda hotspot” or plume fixed in the mantle below a moving North America plate. While this is more or less consistent with hotspot traces computed from “absolute motion” models, the hotspot or plume must resemble a blob in a lava lamp that is turned off for up to 25 million years at a time, and/or be heavily influenced by lithosphere structure. Moreover, Cretaceous igneous activity in Texas and Eocene intrusions in Virginia then require separate mantle “blobs.” The pillow lavas forming the original Bermuda shield volcano have not been reliably dated, and the three associated smaller edifices have not been drilled or dated. A well-dated (ca. 33–34 Ma) episode of unusually titaniferous sheet intrusion in the Bermuda edifice was either triggered by platewide stress changes or reflects local volcanogenic events deep in the mantle source region. The high Ti and Fe of the Bermuda intrusive sheets probably relate to the very high-amplitude magnetic anomalies discovered on the islands. Numerical models constrained by available geophysical data attribute the Bermuda Rise to some combination of lithospheric reheating and dynamic uplift. While the relative contributions of these two processes cannot yet be wholly separated, three features of the rise clearly distinguish it from the Hawaiian swell: (1) the Bermuda Rise is elongated at right angles to the direction of plate motion; (2) there has been little or no subsidence of the rise and the volcanic edifice since its formation—in fact, rise uplift continued at the same site from the late Middle Eocene into the Miocene; and (3) the Bermuda Rise lacks a clear, age-progressive chain. We infer that the Bermuda Rise and other Atlantic midplate rises are supported by anomalous asthenosphere, upwelling or not, that penetrates the thermal boundary layer and travels with the overlying plate. The elongation along crustal isochrons of both the Bermuda volcanoes and the Bermuda Rise and rise development mostly within a belt of rougher, thinner crust and seismically “slower” upper mantle—implying retention of gabbroic melts at the ancient Mid-Atlantic Ridge axis—suggest that the mantle lithosphere may have helped localize rise development, in contradiction to plume models. The Bermuda Rise area is seismically more active than its oceanic surroundings, preferentially along old transform traces, possibly reflecting a weaker upper mantle lithosphere. We attribute the “Bermuda event” to a global plate kinematic reorganization triggered by the closing of the Tethys and/or the associated gravitational collapse into the lower mantle of subducted slabs that had been temporarily stagnant near the 660 km mantle discontinuity. The widespread onset of sinking slabs required simultaneous up-welling for mass balance. In addition, the global plate kinematic reorganization was accompanied by increased stress in some plate interiors, favoring magma ascent along fractures at structurally weak sites. We suggest that the Bermuda event and concomitant igneous activity in Virginia, West Antarctica, Africa, and other regions were among such upwellings, but structurally influenced by the lithosphere, and probably originated in the upper mantle. Drilling a transect of boreholes across and along the Bermuda Rise to elucidate turbidite offlap during rise formation might discriminate between a widely distributed mantle source (such as a previously subducted slab) and a narrow plume whose head (or melt root) spreads out quasi-radially over time, generating an upward and outward expanding swell.